In this study, a new low-cost carbon-based material was prepared via the carbonization of methylene blue adsorbed halloysite (CMH) at different temperatures in a nitrogen atmosphere, which was named CMH-T (T-Temperature). The performance of CMH-T was explored and the effects of initial pH values, catalyst dosage, phenol (PE) concentrations, peroxymonosulfate (PMS) concentrations, and water background compounds on PE degradation were investigated systematically. The results indicated that CMH800 exhibited the best performance to activate PMS for degrading PE.
View Article and Find Full Text PDFA system of Cu/calcite/PDS was constructed to degrade sulfadiazine (SDZ). Different from the traditional Cu-mediated activation, a low concentration of Cu that met drinking water standards (≤ 1 mg/L) transformed into Cu(Ⅱ) solid in the presence of calcite, and then enhanced the degradation of SDZ via PDS activation over a pH range from 3 to 9. According to scavenger and chemical probe experiments, Cu(Ⅲ), rather than radicals (hydroxyl radicals and sulfate radicals) and singlet oxygen, was the predominant reactive species, which was responsible for the degradation of SDZ.
View Article and Find Full Text PDFIn this study, calcite was investigated as an activator for the norfloxacin (NOR) degradation by peroxymonosulfate (PMS). Under optimum conditions, the NOR removal percentage was 99.7% within 60 min, and the pseudo-first-order kinetics effectively described the two-stage oxidation process.
View Article and Find Full Text PDFOccurring naturally siderite (FeCO) was used as the heterogeneous catalyst to activate peroxodisulfate (PDS) for the degradation of sulfadiazine under different initial pH values. The findings of this system exhibited various ROS (e.g.
View Article and Find Full Text PDF