Nowadays, aggregation-caused quenching (ACQ) of organic molecules in aqueous media seriously restricts their analytical and biomedical applications. In this work, hydrogen bond (H-bond) was utilized to resist the ACQ effect of 2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene (Melem) as an advanced electrochemiluminescence (ECL) luminophore, whose ECL process was carefully studied in an aqueous KSO system coupled with electron paramagnetic resonance (EPR) measurements. Notably, the H-bond-induced Melem assemblies (Melem-H) showed 16.
View Article and Find Full Text PDFNowadays, continuous efforts have been devoted to designing stable and high-efficiency electrochemiluminescence (ECL) emitters as alternatives for tris(2,2'-bipyridine)-ruthenium(II) (Ru(bpy)) in medical research. Herein, a novel ECL emitter was obtained by coordinating crystalline covalent triazinyl frameworks (cCTFs) with Ru (termed Ru-cCTFs), which exhibited strong ECL emission by the ligand to metal charge transfer (LMCT) route. After its integration with 4-mercaptopyridine (SH-Py), the resultant SH-Py-Ru-cCTFs achieved 2.
View Article and Find Full Text PDFThermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material.
View Article and Find Full Text PDFEthnopharmacological Relevance: The Mesobuthus martensii scorpions, called as "Quanxie", are known Chinese medicinal material base on the "Combat poison with poison" strategy for more than one thousand years, and still widely used to treat various diseases according to the Pharmacopoeia of the People's Republic of China nowadays.
Aim Of Study: The study aims to investigate the similarity of scorpion neurotoxins at the protein level between the juvenile and adult Mesobuthus martensii scorpions as Chinese medicine materials.
Materials And Methods: The second-, third- and fourth-instar, and adult Mesobuthus martensii scorpions were collected for the characterization of neurotoxin expression through multiple strategic proteomics, including undigested scorpion venom, endopeptidase-digested, and undigested scorpion telson extract for the sample analysis.
Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (O), showing a 2.
View Article and Find Full Text PDFNowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction.
View Article and Find Full Text PDFNowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride.
View Article and Find Full Text PDFElectrochemiluminescence (ECL) has attracted significant interest in the analysis of cancer cells, where the ruthenium(II)-based emitter demonstrates urgency and feasibility to improve the ECL efficiency. In this work, the self-enhanced ECL luminophore was prepared by covalent anchoring of Pd nanoclusters on aminated metal organic frameworks (Pd NCs@MOFs), followed by linkage with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (RuP). The resultant luminophore showed 214-fold self-magnification in the ECL efficiency over RuP alone, combined by promoting the interfacial photoelectron transfer.
View Article and Find Full Text PDFAccurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined.
View Article and Find Full Text PDFNowadays, electrochemiluminescence (ECL) efficiency of an organic emitter is closely related with its potential applications in food safety and environmental monitoring fields. In this work, 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) was self-assembled to form hydrogen bond organic frameworks (HOFs), which worked as ideal reactors to generate highly active oxygen-containing radicals, followed by linking with isoluminol (ILu) via amide bond (termed ILu-HOFs). After covalent assembly with aminated indium-tin oxide electrode (labeled NH-ITO), the ECL efficiency of the ILu-HOFs NH-ITO showed about a 23.
View Article and Find Full Text PDFCytochrome (cyt ) plays a critical role in mitochondrial respiratory chain, whose absence is detrimental to electron transport and reduce adenosine triphosphate. For ultrasensitive detection of cyt , sheet-like covalent organic frameworks (COFs) were prepared by orderly accumulation of 1,3,5-benzenetricarboxaldehyde (BTA) and -phenylenediamine (PDA), and further grafted with -(4-aminobutyl)--ethylisoluminol (ABEI) - an electrochemiluminescence (ECL) emitter. Specifically, the morphology and structure of the COFs-ABEI were mainly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFIn the area of public safety and crime prevention, some research based on deep learning has achieved success in the detection of prohibited items for x-ray security inspection. However, the number of parameters and computational consumption of most object detection methods based on deep learning are huge, which makes the hardware requirements of these methods extremely high and limits their applications. In this paper, a lightweight prohibited item detection method based on YOLOV4 is proposed for x-ray security inspection.
View Article and Find Full Text PDFHeterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy.
View Article and Find Full Text PDFFor public security and crime prevention, the detection of prohibited items in X-ray security inspection based on deep learning has attracted widespread attention. However, the pseudocolor image dataset is scarce due to security, which brings an enormous challenge to the detection of prohibited items in X-ray security inspection. In this paper, a data augmentation method for prohibited item X-ray pseudocolor images in X-ray security inspection is proposed.
View Article and Find Full Text PDFNowadays, aggregation quenching of most organic photosensitizers in aqueous media seriously restricts analytical and biomedical applications of photoelectrochemical (PEC) sensors. In this work, an aggregation-enhanced PEC photosensitizer was prepared by electrostatically bonding protoporphyrin IX (PPIX) with an ionic liquid of 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF]), termed as PPIX-[BMIm] for clarity. The resultant PPIX-[BMIm] showed weak photocurrent in pure dimethyl sulfoxide (DMSO, good solvent), while the PEC signals displayed a 44.
View Article and Find Full Text PDFFor personal safety and crime prevention, some research studies based on deep learning have achieved success in the object detection of X-ray security inspection. However, the research on dangerous liquid detection is still scarce, and most research studies are focused on the detection of some prohibited and common items. In this paper, a lightweight dangerous liquid detection method based on the Depthwise Separable convolution for X-ray security inspection is proposed.
View Article and Find Full Text PDFNowadays, continuous efforts have been devoted to searching highly efficient electrochemiluminescence (ECL) emitters for applications in clinical diagnosis and food safety. In this work, triazinyl-based hydrogen bond organic frameworks (Tr-HOFs) were synthesized by N···H hydrogen bond self-assembly aggregation, where 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (phenyDAT) was prepared the cyclization reaction and behaved as a novel ligand. Impressively, the resulting Tr-HOFs showed strong ECL responses with highly enhanced ECL efficiency (21.
View Article and Find Full Text PDFNowadays, brain natriuretic peptide (BNP-32) is fundamental to early cardiovascular clinical diagnosis, whose accurate assay is of significance by photoelectrochemistry (PEC) for the low background and high precision. Herein, a novel enhanced PEC platform was built by successive deposition of N-doped ZnO nanopolyhedra (N-ZnO NP) and protoporphyrin IX (PPIX). Specifically, the N-ZnO NP with a narrow bandgap of 2.
View Article and Find Full Text PDFIn this work, metal-organic frameworks (MOFs) are utilized as effective ECL coreactant accelerator to enhance the ECL responses of -(aminobutyl)--(ethylisoluminol) (ABEI). Zn-based MOFs (MOF-Zn-1) were prepared by chelating Zn ions with melamine and thiophenedicarboxylic acid (TPDA), which observably accelerated the electrocatalytic oxidation of tripropylamine (TPA). Then, ABEI-MOF-Zn-1 as a high-performance ECL emitter was synthesized an amide reaction between ABEI and mercaptopropionic acid (MPA) modified MOF-Zn-1.
View Article and Find Full Text PDFExploring advanced nanocatalysts are of importance for hydrogen evolution reaction (HER) in alkaline electrolyte (e.g. 1.
View Article and Find Full Text PDFDevelopment of ultra-sensitive and high specific aptasensors is important for early diagnosis of prostate cancer. Herein, ultrasensitive detection of prostate specific antigen (PSA) aptasensor was realized based on the "on-off-on" model via fluorescence (FL) covalent energy transfer between g-CN quantum dot (g-CNQDs) and palladium triangular plates (Pd TPs). Specifically, the Pd TPs were primarily linked with PSA aptamer (PA) as the reporter probe, followed by attaching them onto the g-CNQDs surfaces, causing the highly enlarged FL quenching rate (ca.
View Article and Find Full Text PDFThe robust and strong electrochemiluminescence (ECL) emission of organic emitters in an aqueous solution is crucial for expanding their applications in early diagnosis. Herein, a Zn porphyrin-based metal-organic framework ((Zn)porphMOF) was facilely obtained by chelating Zn(ii)meso-tetra (4-sulfonatophenyl) porphine (Zn-TSPP) with Zn ions, showing substantially enhanced ECL radiation with KSO as the coreactant via the "reduction-oxidation" route in aqueous media. In contrast with Zn-TSPP, (Zn)porphMOF displayed 22-fold increase in the ECL intensity because of the agglomeration effect.
View Article and Find Full Text PDFNovel and distinct enhancement in electrochemiluminescence (ECL) signals of advanced organic luminophores are of importance for expanding their applications in early diagnosis. This work reported the construction of an ultrasensitive label-free ECL aptasensor for thrombin (TB) detection by grafting zinc proto-porphyrin IX (ZnP) onto an aminated zeolitic imidazole framework-8 (defined as ZnP-NH-ZIF-8 for clarity) as the luminophore. The structure and optical properties of the resulting ZnP-NH-ZIF-8 were carefully characterized.
View Article and Find Full Text PDFA biomimetic assembly of per-O-methylated-cyclodextrin dimer with cobalt proto-porphyrin (Co-PPIX@Py2CD) was achieved via covalent linkage between Co of Co-PPIX and pyridine N of Py2CD (primarily synthesized by the acyl chlorination reaction of two β-CDs monomers with 3,5-bis (bromomethyl) pyridine). Ultraviolet-visible (UV-vis) and circular dichroism (CD) absorption spectroscopy, and NMR hydrogen spectroscopy (H-NMR) were adopted to carefully characterize the structure of Py2CD and its functional assembly with Co-PPIX. X-ray photoelectron spectroscopy (XPS) was employed to affirm the binding of the as-obtained Co-PPIX@Py2CD, whose electrochemical kinetics were extensively studied to validate the feasibility in the catalytic reduction of hydrogen peroxide (HO).
View Article and Find Full Text PDF