J Integr Plant Biol
February 2024
Rice is a staple food for half of the world's population, but it is a poor dietary source of calcium (Ca) due to the low concentration. It is an important issue to boost Ca concentration in this grain to improve Ca deficiency risk, but the mechanisms underlying Ca accumulation are poorly understood. Here, we obtained a rice (Oryza sativa) mutant with high shoot Ca accumulation.
View Article and Find Full Text PDFSorghum is highly tolerant to alkaline stress, but the underlying mechanisms are not well understood. Here, based on genotypic difference in alkaline tolerance of sorghum, it was found that AT1 (Alkaline tolerance 1) encoding a G protein is involved in alkaline tolerance through negatively modulating the phosphorylation level of PIP2, an aquaporin with transport activity for HO. Knockout of AT1 releases its inhibition of PIP2, thereby resulting in an increased transport of HO from the cytosol into the apoplast, subsequently boosting alkaline tolerance.
View Article and Find Full Text PDFGlycosyltransferases (GTs) form a large family in plants and are important enzymes for the synthesis of various polysaccharides, but only a few members have been functionally characterized. Here, through mutant screening with gene mapping, we found that an Oryza sativa (rice) mutant with a short-root phenotype was caused by a frame-shift mutation of a gene (OsGT14;1) belonging to the glycosyltransferase gene family 14. Further analysis indicated that the mutant also had a brittle culm and produced lower grain yield compared with wild-type rice, but the roots showed similar root structure and function in terms of the uptake of mineral nutrients.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Polyploidy is a prominent feature for genome evolution in many animals and all flowering plants. Plant polyploids often show enhanced fitness in diverse and extreme environments, but the molecular basis for this remains elusive. Soil salinity presents challenges for many plants including agricultural crops.
View Article and Find Full Text PDFBoth plants and humans require mineral elements for their healthy growth and development. Mineral elements in the soil are taken up by the plant roots and transported to the edible parts for human consumption through various different transporters. An ideal future crop for human health should be rich in essential mineral elements but with less toxic elements in the edible parts.
View Article and Find Full Text PDFClimate change will increase frequency of drought and flooding, which threaten global crop productivity and food security. Rice (Oryza sativa) is unique in that it is able to grow in both flooded and upland conditions, which have large differences in the concentrations and chemical forms of mineral elements available to plants. To comprehensively understand the mechanisms of rice for coping with different water status, we performed ionomics and transcriptomics analysis of the roots, nodes and leaves of rice grown in flooded and upland conditions.
View Article and Find Full Text PDFArsenic (As) is highly toxic to plants and detoxified primarily through complexation with phytochelatins (PCs) and other thiol compounds. To understand the mechanisms of As toxicity and detoxification beyond PCs, we isolated an arsenate-sensitive mutant of Arabidopsis (), (), in the background of the PC synthase-defective mutant (). Under arsenate stress, showed larger decreases in chlorophyll content and the number and size of chloroplasts than and a severely distorted chloroplast structure.
View Article and Find Full Text PDFWRKYs are transcriptional factors involved in stress tolerance and development of plants. In the present study, we characterized , a group IIa WRKY gene, in rice, because its expression was found to be upregulated by arsenate exposure in previous transcriptomic studies. Subcellular localization using YFP-OsWRKY28 fusion protein showed that the protein was localized in the nuclei.
View Article and Find Full Text PDFArsenic (As) contamination in paddy soil can cause phytotoxicity and elevated As accumulation in rice grain. Rice varieties vary in As uptake and tolerance, but the underlying mechanisms remain unclear. In this study, the aus variety Kasalath was found to be more tolerant to arsenate [As(V)] than the japonica variety Nipponbare, but the two varieties showed similar arsenite [As(III)] tolerance.
View Article and Find Full Text PDFExcessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non-functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars.
View Article and Find Full Text PDF