Publications by authors named "Peishi Qi"

Single-atom catalysts (SACs) have emerged as competitive candidates for Fenton-like oxidation of micro-pollutants in water. However, the impact of metal insertion on the intrinsic catalytic activity of carrier materials has been commonly overlooked, and the environmental risk due to metal leaching still requires attention. In contrast to previous reports, where metal sites were conventionally considered as catalytic centers, our study investigates, for the first time, the crucial catalytic role of the carbon carrier modulated through hetero-single-atom dispersion and the regulation of Fenton-like oxidation pathways.

View Article and Find Full Text PDF

Chlorinated aliphatic hydrocarbons (CAHs) are potentially toxic substances that have been detected in various contaminated environments. Biological elimination is the main technique of detoxifying CAHs in the contaminated sites, but the soil bacterial community at CAH-contaminated sites have been little investigated. Here, high-throughput sequencing analysis of soil samples from different depths (to 6 m depth) at an aged CAH-contaminated site has been conducted to investigate the community composition, function, and assembly of soil bacteria.

View Article and Find Full Text PDF

Soil salinity has adverse effects on soil microbial activity and nutrient cycles and therefore limits crop growth and yield. Amendments with halotolerant phosphate-solubilizing bacteria (PSB) and rock phosphate (RP) may improve properties of saline soil. In this study, we investigated the effects of RP either alone or in combination with PSB ( strain TPM23) on peanut growth and soil quality in a saline soil.

View Article and Find Full Text PDF

Herein, we report a rapid and sensitive colorimetric detection of Hg by designing a specific DNA probe with phosphorothioate RNA modification (PS-probe) for Hg recognition and utilizing DNA-modified gold nanoparticles (DNA-AuNPs) as the transducer. The distance between two DNA-AuNPs is controlled by a linker DNA, providing the linker DNA-regulated aggregation or dispersion status of AuNPs in solution. Exonuclease III (Exo III) can trigger the recycled digestion of linker DNA strands, inhibiting the reformation of aggregated nanoparticles and hence leading to a color shift from purple to red.

View Article and Find Full Text PDF

Halotolerant phosphate-solubilizing microorganisms (PSMs) capable of producing plant-growth-promoting traits were grown on salt medium containing Ca(PO) or egg yolk. The number of colonies on plates with Ca(PO) was higher than that on plates with egg yolk. Further, a total of 42 PSM isolates were purified.

View Article and Find Full Text PDF

Membrane fouling mitigation was observed during the development of novel sponge membrane bioreactor coupled with fiber bundle anoxic bio-filter (AF-MBMBR). Soluble microbial product (SMP) was found to be positively correlated with membrane fouling. To further clarify the mechanism of fouling mitigation, the effects of bio-carriers (sponge and fiber bundles) on characteristics and fouling potential of SMP were investigated.

View Article and Find Full Text PDF

Traditional biological treatment was not effective for removing nitrogen from saline wastewater due to the inhibition of high salinity on biomass activity. In this context, a method of removing ammonia nitrogen from waste seawater was proposed by struvite precipitation which was enhanced by seeding technique. The abundant magnesium contained in waste seawater was used as the key component of struvite crystallization without additional magnesium.

View Article and Find Full Text PDF

Membrane fouling mitigation in a novel AF-MBMBR system (moving bed membrane bioreactor (10L) coupled with anoxic biofilter (4L)) under high salinity condition (35‰) was systematically investigated. Pre-positioned AF served as a pretreatment induced significant decrease of suspended biomass by 85% and dissolved organic matters by 51.7% in subsequent MBR, which resulted in a reduction of cake layer formation.

View Article and Find Full Text PDF

The purpose of this study is mainly to have qualitative-quantitative analysis on the adulteration in rice bran oil by near-infrared spectroscopy analytical technology combined with chemo metrics methods. The author configured 189 adulterated oil samples according to the different mass ratios by selecting rice bran oil as base oil and choosing soybean oil, corn oil, colza oil, and waste oil of catering industry as adulterated oil. Then, the spectral data of samples was collected by using near-infrared spectrometer, and it was pre-processed through the following methods, including without processing, Multiplicative Scatter Correction(MSC), Orthogonal Signal Correction(OSC), Standard Normal Variate and Standard Normal Variate transformation DeTrending(SNV_DT).

View Article and Find Full Text PDF

The rapid prediction of the low-carbon fatty acids (C < or = 14) content in grease samples was achieved by a mathematical model established by near infrared spectroscopy combined with support vector machine regression (SVR). In the present project, near-infrared spectrometer SupNIR-5700 was used to collect near-infrared spectra of 58 samples; partial least square (PLS) was applied to remove the strange samples, and principal component analysis (PCA) was conducted on the measurements; radial basis function (RBF) kernel function was selected to establish a regression model supporting vector machine, and then detailed analysis and discussions were conducted concerning their spectral preprocessing and parameters optimization methods. Experimental results showed that by applying particle swarm optimization (PSO) the model demonstrated improved performance, stronger generalization ability, better prediction accuracy and robustness.

View Article and Find Full Text PDF

In order to improve the ammonium-nitrogen (NH4+ -N) biodegradation rate, a suspended carrier was exploited and biofilm was cultivated in three different phases in a sequencing batch reactor (SBR). A flimsy honeycomb-shape biofilm was formed between the endocentric columns on the suspended carrier,which increased the cling amount of nitrobacteria and provided the better condition for nitrobacteria. The bioreactor was operated at the temperature ranges of 24-29 degrees C and pH between 7.

View Article and Find Full Text PDF

The effect of micro-aerobic hydrolysis and acidification to high strength antibiotic wastewater treatment is studied. The results demonstrate that micro oxygen enhanced the physiological metabolizability of facultative hydrolytic and acidogenic bacteria, and aerating stirring improved the hydraulic condition. Degree of acidification (AD) and volatile fatty acid (VFA) in the effluent reached 58.

View Article and Find Full Text PDF