Publications by authors named "Peishan Liu-Snyder"

Secondary injury is a term applied to the destructive and self-propagating biological changes in cells and tissues that lead to their dysfunction or death over hours to weeks after the initial insult (the "primary injury"). In most contexts, the initial injury is usually mechanical. The more destructive phase of secondary injury is, however, more responsible for cell death and functional deficits.

View Article and Find Full Text PDF

Extensive prolonged interactions of inflammatory cells (such as macrophages) at the host-implant interface may lead to implant failure. While previous studies have shown increased in vitro and in vivo bone cell adhesion, proliferation and mineralization on nanophase compared to currently implanted ceramics, few studies have been conducted to elucidate inflammatory cell responses on such nanophase ceramics. Controlling surface feature size and corresponding surface roughness on implants may clearly alter immune cell responses, which would be an extremely important consideration for the use of nanostructured materials as improved biomaterials.

View Article and Find Full Text PDF

Background: Immediately after damage to the nervous system, a cascade of physical, physiological, and anatomical events lead to the collapse of neuronal function and often death. This progression of injury processes is called "secondary injury." In the spinal cord and brain, this loss in function and anatomy is largely irreversible, except at the earliest stages.

View Article and Find Full Text PDF

A common technique to aid in implant fixation into surrounding bone is to inject bone cement into the space between the implant and surrounding bone. The most common bone cement material used clinically today is poly(methyl methacrylate), or PMMA. Although promising, there are numerous disadvantages of using PMMA in bone fixation applications which has limited its wide spread use.

View Article and Find Full Text PDF

The contribution of nanoscale surface roughness on the adsorption of one key cell adhesive protein, fibronectin, on carbon nanotube/poly(carbonate) urethane composites of different surface energies was evaluated. Systematic control of various surface energies by creating different nanosurface roughness features was performed by mixing two promising biomaterials: multi-wall carbon nanotubes and poly(carbonate) urethane. High ratios of carbon nanotubes coated with poly(carbonate) urethane provided for greater hydrophilic surfaces because of higher nanosurface roughness although pure carbon nanotube surfaces were extremely hydrophobic.

View Article and Find Full Text PDF

Polyethylene glycol (PEG) is well known to both fuse and repair cell membranes. This capability has been exploited for such diverse usages as the construction of hybridomas and as a reparative agent following neurotrauma. The latter development has proceeded through preclinical testing in cases of naturally induced paraplegia in dogs.

View Article and Find Full Text PDF

It is well known that traumatic injury in the central nervous system can be viewed as a primary injury and a secondary injury. Increases in oxidative stress lead to breakdown of membrane lipids (lipid peroxidation) during secondary injury. Acrolein, an alpha,beta-unsaturated aldehyde, together with other aldehydes, increases as a result of self-propagating lipid peroxidation.

View Article and Find Full Text PDF

Acrolein, a major lipid peroxidation product, has been associated with both CNS trauma and neurodegenerative diseases. Because of its long half-life, acrolein is a potent endogenous toxin capable of killing healthy cells during the secondary injury process. Traditionally, attempts to intervene in the process of progressive cell death after the primary injury have included scavenging reactive oxygen species (so-called free radicals).

View Article and Find Full Text PDF