Compensated synthetic antiferromagnets (SAFs) stand out as promising candidates to explore various spintronic applications, benefitting from high precession frequency and negligible stray field. High-frequency antiferromagnetic resonance in SAFs, especially the optic mode (OM), is highly desired to attain fast operation speed in antiferromagnetic spintronic devices. SAFs exhibit ferromagnetic configurations above saturation field; however in that case, the intensity of OM is theoretically zero and hard to be detected in well-established microwave resonance experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2024
Beta-gallium oxide (β-GaO) is emerging as a promising ultrawide band gap (UWBG) semiconductor, which is vital for high-power, high-frequency electronics and deep-UV optoelectronics. It is especially significant for flexible wearable electronics, enabling the fabrication of high-performance GaO-based devices at low temperatures. However, the limited crystallinity and pronounced structural defects arising from the low-temperature deposition of GaO films significantly restrict the heterojunction interface quality and the relevant electrical performance of GaO-based devices.
View Article and Find Full Text PDFWith the arrival of the Fifth Generation (5G) communication era, there has been an urgent demand for acoustic filters with a high frequency and ultrawide bandwidth used in radio-frequency (RF) front-ends filtering and signal processing. First-order antisymmetric (A1) lamb mode resonators based on LiNbO film have attracted wide attention due to their scalable, high operating frequency and large electromechanical coupling coefficients (), making them promising candidates for sub-6 GHz wideband filters. However, A1 mode resonators suffer from the occurrence of transverse modes, which should be addressed to make these devices suitable for applications.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2023
Magnetic skyrmions with a well-defined spin texture have shown unprecedented potential for various spintronic applications owning to their topologically non-trivial and quasiparticle properties. To put skyrmions into practical technology, efficient manipulation, especially the inhibition of skyrmion Hall effect (SkHE) has been intensively pursued. In spite of the recent progress made on reducing SkHE in several substituted systems, such as ferrimagnets and synthetic antiferromagnets, the organized creation and current driven motion of skyrmions with negligible SkHE in ferromagnets remain challenging.
View Article and Find Full Text PDFSurface acoustic waves (SAW) provide a promising platform to study spin-phonon coupling, which can be achieved by SAW-driven ferromagnetic resonance (FMR) for efficient acoustic manipulation of spin. Although the magneto-elastic effective field model has achieved great success in describing SAW-driven FMR, the magnitude of the effective field acting on the magnetization induced by SAW still remains hard to access. Here, by integrating ferromagnetic stripes with SAW devices, direct-current detection for SAW-driven FMR based on electrical rectification is reported.
View Article and Find Full Text PDFPhosphorus is one of the important metabolic elements for living organisms, but excess phosphorus in water can lead to eutrophication. At present, the removal of phosphorus in water bodies mainly focuses on inorganic phosphorus, while there is still a lack of research on the removal of organic phosphorus (OP). Therefore, the degradation of OP and synchronous recovery of the produced inorganic phosphorus has important significance for the reuse of OP resources and the prevention of water eutrophication.
View Article and Find Full Text PDFMicromachines (Basel)
February 2023
To meet the demands of highly integrated and miniaturized radio frequency front-end (RFFE) modules, multi-passband filters which support multi-channel compounding come to the foreground. In this work, we proposed a new design of a dual-passband surface acoustic wave (SAW) filter based on a 32°YX-LiNbO (LN)/SiO/SiC multilayered structure. The filter is of a standalone ladder topology and comprises dual-mode resonators, in which the shear horizontal (SH) mode and high-order SH mode are simultaneously excited through electrode thickness modulation.
View Article and Find Full Text PDFOvarian cancer (OVCA) is one of the most common types of cancer in women worldwide. Recent studies have focused on the presence and effect of somatic mutations in patients with OVCA; however, studies on the roles of mutations located in the untranslated regions (UTR) of genes in OVCA remain limited. In the present study, a frequent somatic mutation in the glyceraldehyde 3‑phosphate dehydrogenase (GADPH) 3'UTR was identified using transcriptome sequencing of 120 pairs of OVCA tissue samples.
View Article and Find Full Text PDF