Angew Chem Int Ed Engl
November 2024
Boron neutron capture therapy (BNCT) is an advanced binary tumor-cell-selected heavy-particle radiotherapy used for treating invasive malignant tumors. However, its clinical applications have been impeded by the rapid metabolism and insufficient tumor-specific accumulation of boron agents. To tackle this issue, we develop a smart boron nanosensitizer (BATBN) capable of transforming its size in response to cancer biomarker for optimal balance between penetration and retention of boron-10 for BNCT.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) stands out as a noninvasive potential modality for invasive malignant tumors, with boron drugs playing a crucial role in its efficacy. Nevertheless, the development of boron drugs with biodegradability, as well as high permeability and retention effects, continues to present significant challenges. Here, we fabricate a size-tunable boron nanoreactor (TBNR) via assembling boron nitride quantum dots (BNQDs) and Fe3+ for tumor BNCT and chemodynamic (CDT) synergistic treatment.
View Article and Find Full Text PDFMalignant melanoma (MM) is a malignant tumor associated with high mortality rates and propensity for metastasis. Despite advancement in treatment, the incidence of MM continue to rise globally. GPR168, also known as MrgprF, is a MAS related GPR family member.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2024
Photodynamic therapy (PDT) has become a promising approach and non-invasive modality for cancer treatment, however the therapeutic effect of PDT is limited in tumor metastasis and local recurrence. Herein, a tumor targeted nanomedicine (designated as PCN@HA) is constructed for enhanced PDT against tumors. By modified with hyaluronic acid (HA), which could target the CD44 receptor that expressed on the cancer cells, the targeting ability of PCN@HA has been enhanced.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism.
View Article and Find Full Text PDFPeak alignment is a crucial data-processing step in untargeted metabolomics analysis that aims to integrate metabolite data from multiple liquid chromatography-mass spectrometry (LC-MS) batches for enhanced comparability and reliability. However, slight variations in the chromatographic separation conditions can result in retention time (RT) shifts between consecutive analyses, adversely affecting peak alignment accuracy. In this study, we present a retention index (RI)-based chromatographic peak-shift correction (CPSC) strategy to address RT shifts and align chromatographic peaks for metabolomics studies.
View Article and Find Full Text PDFThe synergistic strategy of nanozyme-based catalytic therapy and photothermal therapy holds great potential for combating bacterial infection. However, challenges such as single and limited enzyme catalytic property, unfavorable catalytic environment, ineffective interaction between nanozymes and bacteria, unsafe laser irradiation ranges, and failed trauma fluid management impede their antibacterial capability and wound healing speed. Herein, for the first time, a PNMn hydrogel is fabricated with multi-enzyme activities and excellent near-infrared (NIR)-II photothermal performance for self-enhanced NIR-II photothermal-catalytic capabilities to efficiently eradicate bacteria.
View Article and Find Full Text PDFPeak alignment is a crucial step in liquid chromatography-mass spectrometry (LC-MS)-based large-scale untargeted metabolomics workflows, as it enables the integration of metabolite peaks across multiple samples, which is essential for accurate data interpretation. Slight differences or fluctuations in chromatographic separation conditions, however, can cause the chromatographic retention time (RT) shift between consecutive analyses, ultimately affecting the accuracy of peak alignment between samples. Here, we introduce a novel RT shift correction method based on the retention index (RI) and apply it to peak alignment.
View Article and Find Full Text PDFGut microbiota-host co-metabolites serve as essential mediators of communication between the host and gut microbiota. They provide nutrient sources for host cells and regulate gut microenvironment, which are associated with a variety of diseases. Analysis of gut microbiota-host co-metabolites is of great significance to explore the host-gut microbiota interaction.
View Article and Find Full Text PDFDi(2-ethylhexyl) phthalate (DEHP), the most widely used plasticizers in the world, has been regarded as an endocrine disrupting chemical with serious adverse health outcomes. Accumulating evidence strongly suggests that the undesirable biological effects of DEHP are meditated by its metabolites rather than itself. However, the metabolic footprints of DEHP in vivo are still unclear.
View Article and Find Full Text PDFBile acids (BAs) are a class of vital gut microbiota-host cometabolites, and they play an important role in maintaining gut microbiota-host metabolic homeostasis. Very recently, a new mechanism of BA anabolic metabolism mediated by gut microbiota (BA-amino acid conjugation) has been revealed, which provides a perspective for the research on BA metabolism and gut metabolome. In this study, we established a polarity-switching multiple reaction monitoring mass spectrometry-based screening method to mine amino acid-conjugated bile acids (AA-BAs) derived from host-gut microbiota co-metabolism.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2022
Although chemoselective labeling strategies show great potential in in-depth description of metabolomics, the associated time and expense limit applications in high-throughput and routine analysis. We report a fast and effective chemoselective labeling strategy based on multifunctionalized monolithic probes. A rapid pH-responsive boronate ester reaction was employed to immobilize and release probe molecules from substrate in 5 min.
View Article and Find Full Text PDFBile acids (BAs) are a type of gut microbiota-host cometabolites with abundant structural diversity, and they play critical roles in maintaining host-microbiota homeostasis. In this study, we developed a new -(4-aminomethylphenyl) pyridinium (AMPP) derivatization-assisted alternating dual-collision energy scanning mass spectrometry (AMPP-dual-CE MS) method for the profiling of BAs derived from host-gut microbiota cometabolism in mice. Using the proposed method, we discovered two new types of amino acid conjugations (alanine conjugation and proline conjugation) and acetyl conjugation with host BAs, for the first time, from mouse intestine contents and feces.
View Article and Find Full Text PDFMediator complex subunit 16 (MED16) is a component of the mediator complex and functions as a coactivator in transcriptional events at almost all RNA polymerase II-dependent genes. In this study, we report that the expression of MED16 is markedly decreased in papillary thyroid cancer (PTC) tumors compared with normal thyroid tissues. , MED16 overexpression in PTC cells significantly inhibited cell migration, enhanced sodium/iodide symporter expression and iodine uptake, and decreased resistance to radioactive I (RAI).
View Article and Find Full Text PDFA mild and efficient protocol for C4-H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates has been described. This C4 sulfonylation proceeded smoothly at room temperature under Ru/Cu photoredox catalysis or Cu/Ag cocatalysis and could tolerate various functional groups. In addition, control experiments suggested that this C4-H sulfonylation reaction might proceed via a single-electron-transfer process.
View Article and Find Full Text PDF