Publications by authors named "Peiran Lin"

Microplastics/nanoplastics (MNPs) inevitably coexist with other pollutants in the natural environment, making it crucial to study the interactions between MNPs and other pollutants as well as their combined toxic effects. In this study, we investigated neurotoxicity in marine medaka (Oryzias melastigma) exposed to polystyrene micro/nanoplastics (PS-MNPs), triphenyltin (TPT), and PS-MNPs + TPT from physiological, behavioral, biochemical, and genetic perspectives. The results showed that marine medaka exposed to 200 ng/L TPT or 200 μg/L PS-NPs alone exhibited some degree of neurodevelopmental deficit, albeit with no significant behavioral abnormalities observed.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) offer versatile applications in tissue engineering and drug screening. To facilitate the monitoring of hiPSC cardiac differentiation, a noninvasive approach using convolutional neural networks (CNNs) was explored. HiPSCs were differentiated into cardiomyocytes and analyzed using the quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

With the rapid advancement of wearable electronics, there is an increasing demand for high-performance flexible strain sensors. In this work, a flexible strain sensor based on liquid metal (LM)-integrated into a microfluidic device is developed with Peano-type fractal structure design. Compared with the microfluidic sensors with straight and wavy microchannels, the sensor with Peano-shaped channels shows lower hysteresis and improved stretchability.

View Article and Find Full Text PDF

Wound healing is a systematic and complex process that involves various intrinsic and extrinsic factors affecting different stages of wound repair. Therefore, multifunctional wound dressings that can modulate these factors to promote wound healing are in high demand. In this work, a multifunctional Janus electrospinning nanofiber dressing with antibacterial and anti-inflammatory properties, controlled release of drugs, and unidirectional water transport was prepared by depositing coaxial nanofibers on a hydrophilic poly(ε-caprolactone)@polydopamine-ε-polyl-lysine (PCL@PDA-ε-PL) nanofiber membrane.

View Article and Find Full Text PDF

Cell alignment widely exists in various in vivo tissues and also plays an essential role in the construction of in vitro models, such as vascular endothelial and myocardial models. Recently, microscale and nanoscale hierarchical topographical structures have been drawing increasing attention for engineering in vitro cell alignment. In the present study, we fabricated a micro-/nanohierarchical substrate based on soft lithography and electrospinning to assess the synergetic effect of both the aligned nanofibrous topographical guidance and the off-ground culture environment provided by the substrate on the endothelium formation and the maturation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

View Article and Find Full Text PDF