The antimicrobial resistance of () is a challenge in the antibiotic treatment of tuberculosis (TB). Herein, we aimed to examine a photodynamic therapy for TB that has a low risk of drug resistance and involves biomimetic macrophage membranes combined with a photosensitizer, chlorin e6 (Ce6; hereinafter, C-MV). We used (), a waterborne pathogen closely related to , which causes TB-like infections in ectotherms but not in humans.
View Article and Find Full Text PDFBackground: Chordoma is a rare malignant bone tumor exhibiting poor survival and prognosis. Hence, it is crucial to develop a convenient and effective prognostic classification method for the rehabilitation and management of patients with chordoma. In this study, we combined DNA methylation profiles and magnetic resonance imaging (MRI) images to generate a radiogenomic signature to assess its effectiveness for prognosis classification in patients with skull base chordoma.
View Article and Find Full Text PDFSepsis is a severe systemic inflammatory syndrome characterized by a dysregulated immune response to infection, often leading to high mortality rates. The intestine, owing to its distinct structure and physiological environment, plays a pivotal role in the pathophysiology of sepsis. It functions as the "central organ" or "engine" in the progression of sepsis, with intestinal injury exacerbating the condition.
View Article and Find Full Text PDFFourteen undescribed sesquiterpenes, named curcumaones A-N (1-14), as well as forty-four (15-58) known ones, were isolated from the secondary rhizomes of Curcuma wenyujin. The structures and absolute configurations of 1-14 were elucidated based on NMR spectroscopic analyses, high resolution electrospray ionization mass spectroscopy (HRESIMS) data and electronic circular dichroism (ECD) spectral analysis. Among these, five sesquiterpenes with the peroxide linkage (1-5) were obtained and the change of chemical shift between the α-C connecting the peroxide linkage and the oxygen atom has been discussed.
View Article and Find Full Text PDFEach organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics.
View Article and Find Full Text PDFTuberculosis, a fatal infectious disease caused by Mycobacterium tuberculosis (M.tb), is difficult to treat with antibiotics due to drug resistance and short drug half-life. Phototherapy represents a promising alternative to antibiotics in combating M.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant socioeconomic burden, and combating COVID-19 is imperative. Blocking the SARS-CoV-2 RBD-ACE2 interaction is a promising therapeutic approach for viral infections, as SARS-CoV-2 binds to the ACE2 receptors of host cells via the RBD of spike proteins to infiltrate these cells. We used computer-aided drug design technology and cellular experiments to screen for peptide S4 with high affinity and specificity for the human ACE2 receptor through structural analysis of SARS-CoV-2 and ACE2 interactions.
View Article and Find Full Text PDFBackground: Head and neck squamous cell carcinoma (HNSCC) is a significant global health challenge. The identification of reliable prognostic biomarkers and construction of an accurate prognostic model are crucial.
Methods: In this study, mRNA expression data and clinical data of HNSCC patients from The Cancer Genome Atlas were used.
Sepsis is a life-threatening disease characterized by multiple organ failure due to excessive activation of the inflammatory response and cytokine storm. Despite recent advances in the clinical use of anti-cytokine biologics, sepsis treatment efficacy and improvements in mortality remain unsatisfactory, largely due to the mechanistic complexity of immune regulation and cytokine interactions. In this study, a broad-spectrum anti-inflammatory and endotoxin neutralization strategy was developed based on autologous "cryo-shocked" neutrophils (CS-Neus) for the management of sepsis.
View Article and Find Full Text PDFThe 2011 nuclear accident at Japan's Fukushima Daiichi Nuclear Power Plant (FDNPP) prompted inquiries about the long-term transfer of Cesium-137 (Cs) from soil to agricultural plants. In this context, numerical modeling is particularly useful for the long-term evaluation of the consequences of agroecosystem contamination. Agricultural practices, such as tillage and cover cropping, play key roles in Cs recycling in agroecosystems.
View Article and Find Full Text PDFBackground: Skull base chordoma is a rare and aggressive tumour of the bone that has a high likelihood of recurrence. The fundamental differences in single cells between primary and recurrent lesions remain poorly understood, impeding development of effective treatment approaches.
Methods: To obtain an understanding of the differences in single cells between primary and recurrent chordomas, we performed single-cell RNA sequencing and T-cell/B-cell receptor (BCR) sequencing.
Hypoparathyroidism (HypoPT) is a rare disease involving the parathyroid glands that is characterized by a reduced secretion or potency of the parathyroid hormone (PTH), which leads to high serum phosphorus levels and low serum calcium levels. HypoPT most commonly results from accidental damage to the glands or their removal during thyroid or other anterior neck surgery. Parathyroid/thyroid surgery has become more common in recent years, with a corresponding rise in the occurrence of HypoPT as a postoperative complication.
View Article and Find Full Text PDFTo combat food freshness fraud, it is urgent to develop a method which could realize the detection of biogenic amines (BAs) present in food. In our study, we developed a colorimetric and ratiometric fluorescence dual-mode sensor which integrated with silver metallization-based response system of AIE liposome + OPD + RSM + Ag toward BAs in foods for fighting freshness fraud. With the hydrolysis from the alkaline of BAs to resorcinol monoacetate (RSM), the production resorcinol (RS) could metallize silver ion (Ag) to silver atoms (Ag) which could lead to a BAs concentration-dependent decrease of the oxidation product 2,3-diaminophenothiazine (DAP) of Ag to o-phenylenediamine (OPD).
View Article and Find Full Text PDFMessenger RNA (mRNA) transfection is the prerequisite for the application of mRNA-based therapeutics. In hard-to-transfect cells, such as macrophages, the effective transfection of mRNA remains a long-standing challenge. Herein, a smart DNA-based nanosystem is reported containing ribosome biogenesis-promoting siRNA, realizing efficient mRNA transfection in macrophages.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2024
Monitoring the crowd in urban hot spot has been an important research topic in the field of urban management and has high social impact. It can allow more flexible allocation of public resources such as public transportation schedule adjustment and arrangement of police force. After 2020, because of the epidemic of COVID-19 virus, the public mobility pattern is deeply affected by the situation of epidemic as the physical close contact is the dominant way of infection.
View Article and Find Full Text PDFBisphenol F (BPF) and bisphenol S (BPS) are emerging bisphenols, which have become the main substitutes for bisphenol A (BPA) in industrial production and are also considered as new environmental pollution challenges. Thus, the necessity for an effective approach to remove BPF and BPS is essential. In this study, fulvic acid (FA) was used to modify Co-Fe binary metals (CFO) for peroxymonosulfate (PMS) activation.
View Article and Find Full Text PDFThe biological characteristics of the temporomandibular joint disc involve complex cellular network in cell identity and extracellular matrix composition to modulate jaw function. The lack of a detailed characterization of the network severely limits the development of targeted therapies for temporomandibular joint-related diseases. Here we profiled single-cell transcriptomes of disc cells from mice at different postnatal stages, finding that the fibroblast population could be divided into chondrogenic and non-chondrogenic clusters.
View Article and Find Full Text PDFTemporomandibular joint (TMJ) growth requires orchestrated interactions between various cell types. Recent studies revealed that fibrocartilage stem cells (FCSCs) in the TMJ cartilage play critical roles as cell resources for joint development and repair. However, the detailed molecular network that influences FCSC fate during TMJ cartilage development remains to be elucidated.
View Article and Find Full Text PDFNanoplastics have attracted extensive attention in recent years. However, little is known about the heteroaggregation behavior of nanoplastics on goethite (FeOOH), especially the contribution of surface functional groups. In this study, the heteroaggregation behavior between polystyrene nanoplastics (PSNPs) and FeOOH was systematically investigated under different reaction conditions.
View Article and Find Full Text PDFObjective: Osteochondroma is a common benign skeletal disorder for which different molecular and histological features of long bones have been reported. We investigated cell-of-origin and molecular mechanisms of a rare condylar osteochondroma (CO).
Methods: Human fibrocartilage stem cells (hFCSCs) isolated from CO and normal condyle tissue were used for RNA sequencing, real-time PCR, Western Blotting, immunohistology, flowcytometry, as well as for chondrogenic differentiation, proliferation, and apoptosis detection assays.
Poor vascularization was demonstrated as a factor inhibiting bone regeneration in patients receiving radiotherapy. Various copper-containing materials have been reported to increase angiogenesis, therefore might improve bone formation. In this study, a Ti6Al4V-1.
View Article and Find Full Text PDFMaxillofacial bone defects are commonly seen in clinical practice. A clearer understanding of the regulatory network directing maxillofacial bone formation will promote the development of novel therapeutic approaches for bone regeneration. The fibroblast growth factor (FGF) signalling pathway is critical for the development of maxillofacial bone.
View Article and Find Full Text PDFIntroduction: The SARS-CoV-2 pandemic has endangered global health, the world economy, and societal values. Despite intensive measures taken around the world, morbidity and mortality remain high as many countries face new waves of infection and the spread of new variants. Worryingly, more and more variants are now being identified, such as 501Y.
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2022
Mature vasculature is important for the survival of bioengineered tissue constructs, both and ; however, the fabrication of fully vascularized tissue constructs remains a great challenge in tissue engineering. Indirect three-dimensional (3D) bioprinting refers to a 3D printing technique that can rapidly fabricate scaffolds with controllable internal pores, cavities, and channels through the use of sacrificial molds. It has attracted much attention in recent years owing to its ability to create complex vascular network-like channels through thick tissue constructs while maintaining endothelial cell activity.
View Article and Find Full Text PDF