Publications by authors named "Peiqiong Shi"

The sweet potato weevil is a notorious underground pest in sweet potato ( L.). However, little is known about the effects of cadmium (Cd) stress on weevil biology and resistance to pesticides and biotic agents.

View Article and Find Full Text PDF

Unlabelled: Bacterial endosymbionts play important roles in the life histories of herbivorous insects by impacting their development, survival, reproduction, and stress tolerance. How endosymbionts may affect the interactions between plants and insect herbivores is still largely unclear. Here, we show that endosymbiotic can provide mutual benefits also outside of their hosts when the sap-sucking whitefly transmits them to plants.

View Article and Find Full Text PDF

The whitefly, Bemisia tabaci, is a destructive and invasive pest of many horticultural plants including poinsettia (Euphorbia pulcherrima). Outbreaks of B. tabaci cause serious damage by direct feeding on phloem sap, and spreading 100+ plant viruses to crops.

View Article and Find Full Text PDF

Endosymbionts live symbiotically with insect hosts and play important roles in the evolution, growth, development, reproduction, and environmental fitness of hosts. Weevils are one of the most abundant insect groups that can be infected by various endosymbionts, such as Sodalis, Nardonella, and Wolbachia. The sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae), is a notorious pest in sweet potato (Ipomoea batatas L.

View Article and Find Full Text PDF

The whitefly Bemisia tabaci is a destructive agricultural pest that frequently harbors various species of secondary symbionts including Rickettsia. Previous studies have revealed that the infection of Rickettsia can improve whitefly performance on food plants; however, to date, no evidence has shown, if, and how, Rickettsia manipulates the plant-insect interactions. In the current study, the effects of Rickettsia persistence on the induced plant defenses and the consequent performance of whitefly B.

View Article and Find Full Text PDF

Bacterial endosymbionts such as Rickettsia and Wolbachia play prominent roles in the development and behaviour of their insect hosts, such as whiteflies, aphids, psyllids and mealybugs. Accumulating studies have emphasized the importance of establishing experimental insect populations that are either lacking or bearing certain species of endosymbionts, because they are the basis in which to reveal the biological role of individual symbionts. In this study, using Rickettsia as an example, we explored a "single-pair screening" method to establish Rickettsia infected and uninfected populations of whitefly Bemisia tabaci MEAM1 for further experimental use.

View Article and Find Full Text PDF

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a severe agricultural pest that harbors at least seven endosymbionts. Many important aspects of the symbiosis mechanism between these bacterial endosymbionts and their hosts are poorly understood, such as endosymbiont proliferation dynamics, spatial distribution and titer regulation during host development. In this study, infection by bacterial endosymbionts in the whitefly B.

View Article and Find Full Text PDF

A growing number of studies have revealed the presence of closely related endosymbionts in phylogenetically distant arthropods, indicating horizontal transmission of these bacteria. Here we investigated the interspecific horizontal transmission of Rickettsia between two globally invasive whitefly species, Bemisia tabaci MEAM1 and B. tabaci MED, via cotton plants.

View Article and Find Full Text PDF

Maternal transmission is the main transmission pathway of facultative bacterial endosymbionts, but phylogenetically distant insect hosts harbor closely related endosymbionts, suggesting that horizontal transmission occurs in nature. Here we report the first case of plant-mediated horizontal transmission of Wolbachia between infected and uninfected Bemisia tabaci AsiaII7 whiteflies. After infected whiteflies fed on cotton leaves, Wolbachia was visualized, both in the phloem vessels and in some novel 'reservoir' spherules along the phloem by fluorescence in situ hybridization using Wolbachia-specific 16S rRNA probes and transmission electron microscopy.

View Article and Find Full Text PDF

The whitefly Bemisia tabaci is a cosmopolitan insect species complex that harbors the obligate primary symbiont Portiera aleyrodidarum and several facultative secondary symbionts including Wolbachia, which have diverse influences on the host biology. Here, for the first time, we revealed two different localization patterns of Wolbachia present in the immature and adult stages of B. tabaci AsiaII7 cryptic species.

View Article and Find Full Text PDF