Publications by authors named "Peiqiang Yu"

Objective: The objective of this study was to determine internal structure spectral profile of by-products from coffee processing that were affected by added-microorganism fermentation duration in relation to truly absorbed feed nutrient supply in ruminant system.

Methods: The by-products from coffee processing were fermented using commercial fermentation product, consisting of various microorganisms: for 0 (control), 7, 14, 21, and 28 days. In this study, carbohydrate-related spectral profiles of coffee by-products were correlated with their chemical and nutritional properties (chemical composition, total digestible nutrient, bioenergy values, carbohydrate sub-fractions and predicted degradation and digestion parameters as well as milk value of feed).

View Article and Find Full Text PDF

The response of feedstuffs to thermal processing depends on the type of feed and the thermal processing methods being applied. Steam pressure toasting (SPT) has been used to modify the nutrient degradability and enhance the nutritional quality of pulses, including faba bean seeds (FBS). Strategic feeding approaches are essential for balancing diets and maintaining adequate nutrition, especially in high-performing ruminants.

View Article and Find Full Text PDF

The objective of this study was to characterize ruminal degradation, intestinal digestion and total true nutrient supply to dairy cows from canola feedstock (canola seeds) and coproducts (meal and pellets) from bio-oil processing which were impacted by source origin. The feedstocks and coproducts (mash, pellet) were randomly collected from five different bio-oil processing plants with five different batches of samples in each bio-processing plant in Canada (CA) and China (CH). In situ rumen degradation kinetics were determined using four fistulated Holstein cows with incubation times at 0, 2, 4, 8, 12, 24 and 48 h.

View Article and Find Full Text PDF

This article aims to review research updates and progress on the nutritional significance of the amides I and II, the alpha-helix and beta-sheet ratios, the microbial protein synthesis, and the steam pressure toasting condition in food and feed with globar and synchrotron molecular microspectroscopic techniques plus chemometrics (both univariate and multivariate techniques). The review focused on (I) impact of the amides I and II, and the alpha-helix and beta-sheet-structure ratios in food and feeds; (II) Current research progress and update in synchrotron technique and application in feed and food molecular structure studies that are associated with nutrition delivery; (III) Impact of thermal processing- steam pressure toasting condition on feed and food; (IV). Impact of the microbial protein synthesis and methodology on feed and food; and (V).

View Article and Find Full Text PDF

Alfalfa ( L.) is a legume forage that is widely cultivated owing to its high biomass yield and favorable nutrient values. However, alfalfa contains relatively high lignin, which limits its utilization.

View Article and Find Full Text PDF

Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration.

Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days.

View Article and Find Full Text PDF

It is important to know the mineral distribution in cereal grains for nutritional improvement or genetic biofortification. Distributions and intensities of micro-elements (Mn, Fe, Cu, and Zn) and macro-elements (P, S, K and Ca) in Arborg oat were investigated using synchrotron-based on X-ray fluorescence imaging (XFI). Arborg oat provided by the Crop Development Center (CDC, Aaron Beattie) of the University of Saskatchewan for 2D X-ray fluorescence scans were measured at the BioXAS-Imaging beamline at the Canadian Light Source.

View Article and Find Full Text PDF

Objective: The objective of this study was to characterize physiochemical and nutrient profiles of feedstock and co-products from canola bio-oil processing that were impacted by source origin. The feedstocks and co-products (mash, pellet) were randomly collected from five different bio-oil processing plants with five different batches of samples in each bio-processing plant in Canada (CA) and China (CH).

Methods: The detailed chemical composition, energy profile, total digestible nutrient (TDN), protein and carbohydrate subfractions, and their degradation and digestion (CNCPS6.

View Article and Find Full Text PDF

The objectives of this study were to explore the possibility of using near infrared (NIR) and Fourier transform mid-infrared spectroscopy-attenuated total reflectance (ATR-FT/MIR) molecular spectroscopic techniques as non-invasive and rapid methods for the quantification of six major ergot alkaloids (EAs) in cool-season wheat. In total, 107 wheat grain samples were collected, and the concentration of six major EAs was analyzed using the liquid chromatography-tandem mass spectrometry technique. The mean content of the total EAs-ergotamine, ergosine, ergometrine, ergocryptine, ergocristine, and ergocornine-was 1099.

View Article and Find Full Text PDF

To our knowledge, there is no study on the relationship between molecular spectral features and nutrient availability in chickpeas. The purpose of this study was to reveal molecular structure spectral profiles among cool-season adapted CDC chickpea varieties and detect the molecular structure changes induced by thermal processing methods using vibrational Fourier-transform infrared (FTIR) spectroscopy. Three varieties of chickpea samples (CDC Alma, Cory, Frontier) were finely ground using a 0.

View Article and Find Full Text PDF

To our knowledge, the study interconnection between inherent chemical functional group spectral features and nutrient utilisation is still limited. The objective of this study was to test the adequacy of vibrational Fourier transform infrared attenuated total reflectance (ATR-FTIR) spectroscopy as a fast tool to assess the interactive relationship between the nutritive value of the Prairie cool-season oat (Avena sativa L.) varieties in dairy cows and inherent chemical functional group spectral features.

View Article and Find Full Text PDF

Whole-plant faba bean silage has a high content in indigestible fiber. Improvement of fiber digestibility of faba bean silage would benefit animal production. However, there is no study on pretreating fibrolytic enzyme in whole-plant faba bean silage-based diet for dairy cows on animal performance.

View Article and Find Full Text PDF

Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles.

Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters.

View Article and Find Full Text PDF

Objective: Feed molecular structures can affect its availability to gastrointestinal enzymes which impact its digestibility and absorption. The molecular spectroscopy-attenuated total reflectance Fourier transform infrared vibrational spectroscopy (ATR-FTIR) is an advanced technique that measures the absorbance of chemical functional groups on the infrared region so that we can identify and quantify molecules and functional groups in a feed. The program aimed to reveal the association of intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing.

View Article and Find Full Text PDF

It is necessary to obtain more recent data on the prevalence and co-occurrence of mycotoxins in feed and food to minimize risks. This study examined the recent presence, co-occurrence, and correlation patterns of six major ergot alkaloids (EAs; i.e.

View Article and Find Full Text PDF

To our knowledge, there is limited study on the relationship between the molecular structure of feed and nutrient availability in the ruminant system. The objective of this study is to use advanced vibrational molecular spectroscopy (attenuated total reflection [ATR]-Fourier transform infrared [FT/IR]) to reveal carbohydrate molecular structure properties of faba bean partitions (stem, leaf, whole pods [WP], and whole plant) and faba bean silage before and after rumen incubation in relation to nutrient availability and supply to dairy cattle. The study included the correlation between carbohydrate-related spectral profiles and chemical profiles, feed energy values, Cornell Net Carbohydrate and Protein System carbohydrate fractions, and rumen degradation parameters of faba bean samples (whole crop, stem, leaf, WP, and silage) before and after rumen incubation.

View Article and Find Full Text PDF

Different feed processing techniques affect barley digestibility and nutrient utilization in ruminants. To our knowledge, there are few studies on the interactive relationship between carbohydrate molecular structure profiles of cool-season-adapted barley grain and nutritional characteristics for ruminants. The objectives of this study were: (1) to investigate the effect of different technological processing methods on carbohydrate chemical profiles, Cornell Net Carbohydrate and Protein System-carbohydrate subfractions, ruminal and intestinal carbohydrate digestion of barley grain in dairy cows; (2) to study the effect of heat processing on carbohydrate molecular structure of barley grain using advanced molecular spectroscopy; and (3) to associate processing-induced changes in carbohydrate molecular structure with changes in carbohydrate metabolic profiles in dairy cows.

View Article and Find Full Text PDF

Synchrotron radiation based on Fourier transform infrared radiation (SR-FTIR), X-ray fluorescence (XRF) and attenuated total reflection based on Fourier transform infrared radiation (ATR-FTIR) spectroscopy are both fast determining and minimal sample preparing techniques. They are capable of detecting the internal molecular structures. However, these techniques are still not well understood by nutrition researchers for the analysis of feed.

View Article and Find Full Text PDF

To our knowledge, there is little research done in using vibrational MID-IR molecular spectroscopy- attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) for ruminant system study. The objective of this study was to use ATR-FTIR as a fast analytical tool to reveal association between protein molecular structure in faba and metabolizable protein supply and nutrient delivery, and to explore the relationship between protein molecular structure in original and ruminal degraded residue and in situ rumen protein degradation and protein metabolism characteristics of faba bean samples (whole crop, stem, leaf, whole pods, and faba silage). The experiment for ruminant nutrition research was RCBD.

View Article and Find Full Text PDF

This article aims to review recent progress and update on utilization of exogenous fibrolytic enzymes in fiber fermentation, degradation, and digestions and nutritive and anti-nutritional characteristics of whole legume faba bean and its silage. The study focused on strategies to improve the utilization and bioavailability of fiber through pre-treating exogenous fibrolytic enzymes. The review includes features of nutrition and anti-nutritional factors and environment impact, forage fiber fermentation, degradation and digestion, legume bean in various diets, use of exogenous enzyme and factor affecting enzyme action in fiber digestion as well as exogenous enzyme response.

View Article and Find Full Text PDF

This article aims to review research progress and provide future study on physicochemical, nutritional, and molecular structural characteristics of canola and rapeseed feedstocks and co-products from bio-oil processing and nutrient modeling evaluation methods. The review includes Canola oil seed production, utilization and features; Rapeseed oil seed production and canola oil seed import in China; Bio-processing, co-products and conventional evaluation methods; Modeling methods for evaluation of truly absorbed protein supply from canola feedstock and co-products. The article provides our current research in feedstocks and co-products from bio-oil processing which include Characterization of chemical and nutrient profiles and ruminal degradation and intestinal digestion; Revealing intrinsic molecular structures and relationship between the molecular structure spectra features and nutrient supply from feedstocks and co-products using advanced vibrational molecular spectroscopy technique.

View Article and Find Full Text PDF

Background: Faba bean varieties with low or zero tannin content have been developed in Canada to overcome the negative effects of condensed tannins on the utilization by ruminants of crude protein (CP) and starch. However, their nutritional value has not been evaluated for incorporation in dairy rations. The objectives of this study were to investigate (i) the chemical profile; (ii) the Cornell Net Carbohydrate and Protein System (CNCPS) protein and carbohydrate subfractions; (iii) the energy values; (iv) the ruminal, intestinal, and total digestibility of CP; (v) the metabolizable protein (MP) supply to dairy cows; and (vi) the protein-inherent molecular spectral characteristics of brown-seeded (var.

View Article and Find Full Text PDF

This article aims to review recent research progress and update on faba bean seeds and plant in food and feed type, physiochemical, nutritional, and molecular structural characteristics with molecular spectroscopy with chemometrics (both univariate and multivariate techniques). The review focused on chemical and nutritional characterization of faba bean and faba forage and feeding strategies to improve its utilization. The molecular spectroscopic techniques for faba research and the association between molecular structure and nutrient availability and utilization in ruminant system were reviewed.

View Article and Find Full Text PDF

To our knowledge, there was no study on interactive relationship between CHO molecular structure spectral profiles of newly developed cool-season adapted faba bean and nutritional characteristics in ruminants. The aim of this study was to evaluate the impact of genotypes and tannin levels on the physicochemical and nutritional characteristics of faba bean as an alternative protein and energy source for ruminants and its relation to CHO molecular structure spectral profiles using vibrational molecular spectroscopy (Ft/IR-ATR). Eight genotypes with two tannin levels (low and normal) grown at three different locations in Saskatchewan (CDC crop research fields) were analysed.

View Article and Find Full Text PDF