Publications by authors named "Peiqi Qiu"

High-temperature polymer dielectrics have broad application prospects in next-generation microelectronics and electrical power systems. However, the capacitive energy densities of dielectric polymers at elevated temperatures are severely limited by carrier excitation and transport. Herein, a molecular engineering strategy is presented to regulate the bulk-limited conduction in the polymer by bonding amino polyhedral oligomeric silsesquioxane (NH -POSS) with the chain ends of polyimide (PI).

View Article and Find Full Text PDF

Minimum energy path (MEP) search is a vital but often very time-consuming method to predict the transition states of versatile dynamic processes in chemistry, physics, and materials science. In this study, we reveal that the largely displaced atoms in the MEP structures maintain transient chemical bond lengths resembling those of the same type in the stable initial and final states. Based on this discovery, we propose an adaptive semirigid body approximation (ASBA) to construct a physically reasonable initial guess for the MEP structures, which can be further optimized by the nudged elastic band method.

View Article and Find Full Text PDF

Cationic polymer polyethylenimine (PEI) plays a crucial role in gene delivery. However, high molecular weight PEI leads to higher efficient transfection efficacy and higher cytotoxicity while low molecular weight PEI exhibits lower transfection performance with lower toxicity. Therefore, effective chemical modification of PEI is required to enhance transfection activity and improve biocompatibility.

View Article and Find Full Text PDF

Electrolyte additives have been extensively used as an economical approach to improve Li-ion battery (LIB) performances; however, their selection has been conducted on an Edisonian trial-and-error basis, with little knowledge about the relationship between their molecular structure and reactivity as well as the electrochemical performance. In this work, a series of phosphate additives with systematic structural variation were introduced with the purpose of revealing the significance of additive structure in building a robust interphase and electrochemical property in LIBs. By comparing the interphases formed by tripropyl phosphate (TPPC1), triallyl phosphate (TPPC2), and tripropargyl phosphate (TPPC3) containing alkane, alkene, and alkyne functionalities, respectively, theoretical calculations and comprehensive characterizations reveal that TPPC3 and TPPC2 exhibit more reactivity than TPPC1, and both can preferentially decompose both reductively and oxidatively, forming dense and protective interphases on both the cathode and anode, but they lead to different long-term cycling behaviors at 55 °C.

View Article and Find Full Text PDF