IEEE J Biomed Health Inform
May 2024
Myoelectric prostheses are generally unable to accurately control the position and force simultaneously, prohibiting natural and intuitive human-machine interaction. This issue is attributed to the limitations of myoelectric interfaces in effectively decoding multi-degree-of-freedom (multi-DoF) kinematic and kinetic information. We thus propose a novel multi-task, spatial-temporal model driven by graphical high-density electromyography (HD-EMG) for simultaneous and proportional control of wrist angle and grasp force.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
January 2024
Wearable lower-limb joint angle estimation using a reduced inertial measurement unit (IMU) sensor set could enable quick, economical sports injury risk assessment and motion capture; however the vast majority of existing research requires a full IMU set attached to every related body segment and is implemented in only a single movement, typically walking. We thus implemented 3-dimensional knee and hip angle estimation with a reduced IMU sensor set during yoga, golf, swimming (simulated lower body swimming in a seated posture), badminton, and dance movements. Additionally, current deep-learning models undergo an accuracy drop when tested with new and unseen activities, which necessitates collecting large amounts of data for the new activity.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
August 2023
Biometric-based personal identification models are generally considered to be accurate and secure because biological signals are too complex and person-specific to be fabricated, and EMG signals, in particular, have been used as biological identification tokens due to their high dimension and non-linearity. We investigate the possibility of effectively attacking EMG-based identification models with adversarial biological input via a novel EMG signal individual-style transformer based on a generative adversarial network and tiny leaked data segments. Since two same EMG segments do not exist in nature; the leaked data can't be used to attack the model directly or it will be easily detected.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
October 2022
Wrist-based hand gesture recognition has the potential to unlock naturalistic human-computer interaction for a vast array of virtual and augmented reality applications. Photoplethysmography (PPG), force myography (FMG), and accelerometry (ACC) have generally been proposed as isolated single sensing modalities for gesture recognition, but any of these alone is inherently limited in the amount of biological information it can collect during finger and hand movements. We thus propose a novel, wrist-based, PPG-FMG-ACC combined sensing approach based on a multi-head attention mechanism fusion convolutional neural network (CNN-AF) for gesture recognition.
View Article and Find Full Text PDFStroke often leads to hand motor dysfunction, and effective rehabilitation requires keeping patients engaged and motivated. Among the existing automated rehabilitation approaches, data glove-based systems are not easy to wear for patients due to spasticity, and single sensor-based approaches generally provided prohibitively limited information. We thus propose a wearable multimodal serious games approach for hand movement training after stroke.
View Article and Find Full Text PDFIn this paper, we introduced a novel ankle band with a vibrational sensor that can achieve low-cost ankle flexion angle estimation, which can be potentially used for automated ankle flexion angle estimation in home-based foot drop rehabilitation scenarios. Previous ankle flexion angle estimation methods require either professional knowledge or specific equipment and lab environment, which is not feasible for foot drop patients to achieve accurate measurement by themselves in a home-based scenario. To solve the above problems, a prototype was developed based on the assumption that the echo of a vibration signal on the tibialis anterior had different acoustic impedance distribution.
View Article and Find Full Text PDFWearable activity recognition can collate the type, intensity, and duration of each child's physical activity profile, which is important for exploring underlying adolescent health mechanisms. Traditional machine-learning-based approaches require large labeled data sets; however, child activity data sets are typically small and insufficient. Thus, we proposed a transfer learning approach that adapts adult-domain data to train a high-fidelity, subject-independent model for child activity recognition.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2022
Walking, one of the most common daily activities, causes unwanted movement artifacts which can significantly deteriorate hand gesture recognition accuracy. However, traditional hand gesture recognition algorithms are typically developed and validated with wrist-worn devices only during static human poses, neglecting the critical importance of dynamic effects on gesture accuracy. Thus, we developed and validated a signal decomposition approach via empirical mode decomposition to accurately segment target gestures from coupled raw signals during dynamic walking and a transfer learning method based on distribution adaptation to enable gesture recognition through domain transfer between dynamic walking and static standing scenarios.
View Article and Find Full Text PDFIEEE Rev Biomed Eng
March 2022
Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication.
View Article and Find Full Text PDF