Electrons detached from atoms by photoionization carry valuable information about light-atom interactions. Characterizing and shaping the electron wave function on its natural timescale is of paramount importance for understanding and controlling ultrafast electron dynamics in atoms, molecules and condensed matter. Here we propose a novel attoclock interferometry to shape and image the electron wave function in atomic photoionization.
View Article and Find Full Text PDFThe inflammatory microenvironment of macrophage plays an important role in acute myocardial infarction (AMI), but the regulatory mechanism is unknown. Here, we aimed to investigate the role of Malat1 on inflammation microenvironment of macrophage in AMI. Our study found that Malat1 expression was increased in AMI, which mainly expressed in macrophages.
View Article and Find Full Text PDFFURIN, a member of the mammalian proprotein convertases (PCs) family, can promote the proteolytic maturation of proproteins. It has been shown that FURIN plays an important role in the progression of atherosclerosis (AS). Current evidence indicates that autophagy widely participates in atherogenesis.
View Article and Find Full Text PDFHyperbranched polysaccharide from Pleurotus tuber-regium (PTR-HBPS) is a β-glucan with high degree of branching (DB, 0.69) and a molecular weight (Mw) of 31.2 × 10 g/mol with mixed β-1, 4/β-1, 4, 6/β-1, 6 glucosidic linkages.
View Article and Find Full Text PDFWith the rapid development of femtosecond lasers, the generation and application of optical vortices have been extended to the regime of intense-light-matter interaction. The characterization of the orbital angular momentum (OAM) of intense vortex pulses is very critical. Here, we propose and demonstrate a novel photoelectron-based scheme that can in situ distinguish the OAM of the focused intense femtosecond optical vortices without the modification of light helical phase.
View Article and Find Full Text PDFAS is an important pathological basis of cardiovascular disease. miRNAs are involved in almost all steps of AS, including the injury and dysfunction of endothelial cells and vascular smooth muscle cells. This work elucidated the biological functions of miR-512-3p in AS and probed into the underlying molecular mechanism.
View Article and Find Full Text PDFWe study multiphoton ionization of Kr atoms by circular 400-nm laser fields and probe its photoelectron circular dichroism with the weak corotating and counterrotating circular fields at 800 nm. The unusual momentum- and energy-resolved photoelectron circular dichroisms from the ^{2}P_{1/2} ionic state are observed as compared with those from ^{2}P_{3/2} ionic state. We identify an anomalous ionization enhancement at sidebands related to the ^{2}P_{1/2} ionic state on photoelectron momentum distribution when switching the relative helicity of the two fields from corotating to counterrotating.
View Article and Find Full Text PDFAims: Sodium-glucose co-transporter 2 inhibitor (SGLT2i), initially introduced for the treatment of diabetes mellitus (DM), demonstrates cardiovascular and renal benefits in patients with heart failure (HF). We aimed to conduct a meta-analysis of its effects on cardiovascular, renal, and major safety outcomes in HF.
Methods And Results: PubMed, Embase, Cochrane Library, and Web of Science were searched using the terms of "SGLT2i and HF" or "SGLT2i *".
We demonstrate a novel attoclock, in which we add a perturbative linearly polarized light field at 400 nm to calibrate the attoclock constructed by an intense circularly polarized field at 800 nm. This approach can be directly implemented to analyze the recent hot and controversial topics involving strong-field tunneling ionization. The generally accepted picture is that tunneling ionization is instantaneous and that the tunneling probability synchronizes with the laser electric field.
View Article and Find Full Text PDFTo provide the bilateral advantages of emulsions and hydrogels, a facile approach was used to fabricate nanoemulsions filled hydrogel beads through combining the method of self-emulsification and sodium alginate (SA) ionic gelation. The encapsulation and release behavior of curcumin (Cur) were further investigated. The results indicated that Cur packaged nanoemulsions were with the size of 24.
View Article and Find Full Text PDFWe experimentally measure the laser-intensity-dependent photoelectron momentum distributions (PMDs) of Ar atoms with two-color (ω+2ω) corotating circularly polarized fields. The interference patterns on PMDs reveal complex structures with respect to the laser intensity ratio. The main above-threshold ionization peaks and sidebands on PMD distribute oppositely when the fundamental field is much weaker than the second-harmonic field, and the PMD reveals a characteristic single-lobe distribution when the two colors have comparable intensities.
View Article and Find Full Text PDFWe employ attosecond angular streaking with photoelectron interferometric metrology to reveal electron sub-Coulomb-barrier dynamics. We use a weak perturbative corotating circularly polarized field (800 nm) to probe the strong-field ionization by an intense circularly polarized field (400 nm). In this double-pointer attoclock photoelectron interferometry, we introduce a spatially rotating temporal Young's two-slit interferometer, in which the oppositely modulated wave packets originating from consecutive laser cycles are dynamically prepared and interfered.
View Article and Find Full Text PDFWe perform a joint experimental and theoretical study on momentum- and energy-resolved photoelectron spin polarization in multiphoton ionization of Xe atoms by circularly polarized fields. We experimentally measure the photoelectron momentum distributions of Xe atoms in circularly polarized near-infrared (800 nm) and ultraviolet (400 nm) light, respectively. We analyze the momentum- and energy-resolved photoelectron spin polarization by comparing the experimental photoelectron momentum distributions with the simulations, although we cannot derive the spin polarization solely from the experiment.
View Article and Find Full Text PDFWe measure photoelectron momentum distributions of Ar atoms in orthogonally polarized two-color laser fields with comparable intensities. The synthesized laser field is used to manipulate the oscillating tunneling barrier and the subsequent motion of electrons onto two spatial dimensions. The subcycle structures associated with the temporal double-slit interference are spatially separated and enhanced.
View Article and Find Full Text PDF