Publications by authors named "Peimin Jia"

Cytarabine (Ara-c) has been an important agent in acute myeloid leukemia (AML) treatment for more than 40 years. While, the mechanisms underlying low dose cytarabine (LD Ara-c) is poorly understood. In this study, we investigated the therapeutic effect of LD Ara-C in vitro.

View Article and Find Full Text PDF

Despite advances in the treatment of T‑cell acute lymphoblastic leukemia (T‑ALL), the outcome of T‑ALL treatment remains unsatisfactory, therefore, more effective treatment is urgently required. The present study examined the cytotoxicities of bortezomib in combination with daunorubicin against human Jurkat and Molt‑4 T‑ALL cells and primary T‑ALL cells. Compared with treatment alone, co‑exposure of cells to bortezomib and daunorubicin resulted in a significant increase in cell death in the Jurkat cells, as evidenced by the increased percentage of Annexin V‑positive cells, the formation of apoptotic bodies.

View Article and Find Full Text PDF

Objective: To explore the growth inhibitory effect of quercetin on imatinib-resistant chronic myeloid leukemia cell lines and to clarify its involved mechanisms.

Methods: The cell viability was detected by trypan blue Staining, percentage of apoptotic cells and cell cycle distribution were detected by flow cytometry, the protein expression was detected by Western blot.

Results: Both inhibitory effect of proliferation and apoptosis-inducing effect were similar between the imatinib-resistant and -sensitive cell lines treated with 25 µmol/L quercetin for 24 hours and with arrest of cell cycle at G/M phase.

View Article and Find Full Text PDF

RIG-G (retinoic acid-induced gene G) was originally identified in ATRA (all-trans retinoic acid)-treated NB4 acute promyelocytic leukemia (APL) cells. It was induced to expression by ATRA along with the differentiation of the cells. However, little is known about its role(s).

View Article and Find Full Text PDF

We previously showed that Rig-G, an antiproliferative protein induced by interferon, can sequester CSN5 protein in the cytoplasm. Here, we report that Rig-G can destroy the functions of CSN5-containing COP9 signalosome (CSN), a highly conserved multiprotein complex implicated in protein deneddylation, deubiquitination, and phosphorylation. By damaging integrity and stability of the CSN complex, Rig-G can dramatically reduce the cellular content of CSN complex and inhibit its regulatory roles in assembly and activation of cullin-RING ubiquitin E3 ligases (CRL).

View Article and Find Full Text PDF

This study was aimed to further explore the apoptosis-inducing effect of bortezomib combined with cytarabine (Ara-C) on U937 cell line. Proliferation and apoptosis in U937 cells treated with bortezomib and/or Ara-C were assessed by cell count. Cell cycle distribution and reactive oxygen species (ROS) production level were measured by using flow cytometry.

View Article and Find Full Text PDF

This study was aimed to explore the effect of bortezomib and low concentration cytarabine (Ara-C) on proliferation and apoptosis in U937 cell line and its mechanism. The proliferation and apoptosis of U937 cells treated with bortezomib (10 nmol/L) and(or) Ara-C (50 nmol/L) were observed by cell count, cell morphology, flow cytometry and Western blot. The results showed that bortezomib and Ara-C alone inhibited U937 cell proliferation.

View Article and Find Full Text PDF

Objective: To explore the relationship between interferon (IFN) α and all-trans retinoic acid (ATRA)-induced signaling pathways in the expression of retinoic acid-induced gene G (RIG-G).

Methods: Acute promyelocytic leukemia cell line NB4 and signal transducer and activator of transcription (STAT)1-deficient U3A cells were used. The protein levels of tyrosine-phosphorylated STAT2 in ATRA-treated NB4 cells were detected by Western blot.

View Article and Find Full Text PDF

This study was purposed to investigate the expression of ifi56 gene in the ATRA-induced acute promyelocytic leukemia (APL) NB4 cell differentiation and to construct the eukaryotic expression plasmid of ifi56 gene. RT-PCR was used to detect the expression of ifi56 in NB4 cells treated with ATRA for different time. Human ifi56 cDNA was amplified by RT-PCR and cloned into pEGFP-C1 vector, then was transfected into 293T cells.

View Article and Find Full Text PDF

We previously reported that IRF-9/STAT2 functional interaction could drive the expression of retinoic acid-induced gene G (RIG-G), independently of STAT1 and the classical JAK-STAT pathway, providing a novel alternative pathway for interferons (IFN) to mediate their multiple biological properties. In addition, we also found that IRF-1 could regulate RIG-G induction as well as the expression of IRF-9 and STAT2 in some cases. But the mechanisms by which IRF-1 exerted its action remained to be elucidated.

View Article and Find Full Text PDF

Objective: To study the regulatory role of interferon-stimulated response elements (ISREs) located on the retinoic acid-induced gene G (RIG-G) promoter in RIG-G expression.

Methods: By using point mutation technique, the authors constructed the wide type and site mutant reporter gene plasmids according to the ISRE sequence on RIG-G promoter, and detected the functional activities by luciferase reporter assay.

Results: Mutation in ISRE II alone had no obvious effect on the expression of the reporter gene, whereas mutation in ISRE I dramatically inhibited the transactivity of RIG-G promoter.

View Article and Find Full Text PDF

Objective: To investigate the molecular mechanisms by which IFN-alpha regulated retinoic acid-induced gene G (RIG-G) expression.

Methods: The expression of STAT1, p-STAT1 and RIG-G in IFN-alpha-treated NB4 cells was detected by Western blot. The roles of STAT1, STAT2 and IRF-9 in IFN-alpha-induced RIG-G expression were analyzed in STAT1-null U3A cells by cell transfection, reporter gene assay, co-immunoprecipitation and chromatin immunoprecipitaion.

View Article and Find Full Text PDF

To investigate the molecular mechanisms of all-trans retinoic acid (ATRA)-induced rig-g gene expression and to better understand the signal transduction of ATRA during acute promyelocytic leukemia (APL) cell differentiation, the luciferase reporter assay, co-immunoprecipitation and chromatin immunoprecipitation were used to clarify the basic transcriptional factors, which directly initiated the expression of rig-g gene. The results showed that the expression of STAT2, IRF-9 and IRF-1 could be upregulated by ATRA with different kinetics in NB4 cells. IRF-9 was able to interact with STAT2 to form a complex, which could bind the rig-g gene promoter and trigger the rig-g expression.

View Article and Find Full Text PDF

Retinoic acid-induced gene G (RIG-G), a gene originally identified in all-trans retinoic acid-treated NB4 acute promyelocytic leukemia cells, is also induced by IFNalpha in various hematopoietic and solid tumor cells. Our previous work showed that RIG-G possessed a potent antiproliferative activity. However, the mechanism for the transcriptional regulation of RIG-G gene remains unknown.

View Article and Find Full Text PDF

Two-photon fluorescence microscopy is a novel imaging technique, which is primarily sensitive to a specimen's response coming from an in-focus plane, thus has low photo-bleaching and photo-damage to biological samples. 5-ALA induced production of PpIX in DHL cells was excited by 820 nm femtosecond laser; two-photon excitation fluorescence of single cell was obtained in Lambda mode of laser scanning confocal microscope. The specific fluorescence intensity of PpIX which accumulated in DHL cells was measured at 2, 4 and 10 mmol x L(-1) concentration of 5-ALA with different incubation time, which reflected the kinetics of 5-ALA accumulated in DHL cells.

View Article and Find Full Text PDF

Objective: To investigate the effects of CDA-II alone or combined with cAMP on the retinoic acid (RA)-resistant acute promyelocytic leukemia (APL) cells.

Methods: The RA-resistant cell line NB4-R2 was used as an in vitro model and treated with CDA-II alone or in combination with cAMP. Cell apoptosis was assessed by morphology observation, distribution of cellular DNA contents and sub-G1 cell population.

View Article and Find Full Text PDF

To explore the molecular mechanisms of acute promyelocytic leukemia cell differentiation induced by cAMP combined with low-dose As2O3, the PR9 cell line, which was stably transfected by PML-RARa fusion gene, was used as in vitro model. The effects of PML-RARa on cAMP-induced AML cell differentiation were evaluated according to cell growth, cell morphology, cell surface antigen as well as luciferase reporter gene assay, in the cells before and after the treatment with cAMP and/or As2O3. The results showed that cAMP alone could slightly increase the expression of CD11b in the PR9 cells expressing the PML-RARa fusion protein, but could not induce these cells to differentiate.

View Article and Find Full Text PDF

Objective: To investigate the biological function of RIG-G gene by establishing a cell line stably expressing RIG-G protein.

Methods: Ectopic RIG-G gene was transfected into U937 cells by using Tet-off expression system. Changes before and after RIG-G expression were detected for cell growth, cell morphology, cell surface antigen and cell cycle regulating proteins.

View Article and Find Full Text PDF

Objective: To investigate the molecular mechanisms of anti-proliferative effect of retinoic acid-induced gene G (RIG-G) protein on tumor cells.

Methods: HA-RIG-G expression plasmid and FLAG-Jun activating binding protein 1 (JAB1) expression plasmid were construction and transfected into the African green monkey kidney cells of the line CDS-7 and mouse fibroblast cells of the line NIH3T3. Western blotting was used to detect the p27 expression in the cells.

View Article and Find Full Text PDF

This study was aimed to investigate the possible effects of cyclic adenosine monophosphate (cAMP) analogue 8-(4-chlorophenylthio) adenosine 3', 5'-cyclic monophosphate (8-CPT-cAMP) on the M(2b) subtype of acute myeloid leukemia (AML-M(2b)) cells. AML-M(2b) is characterized by the non-random chromosome translocation t (8; 21) (q22; q22), through which AML1 (acute myeloid leukemia 1) gene on chromosome 21 is fused with ETO (eight twenty-one) gene on chromosome 8, coding correspondent AML1-ETO fusion protein, which plays a crucial role in the leukemogenesis of AML-M(2b). The AML-M(2b) cell line Kasumi-1 cells were used as an in vitro model.

View Article and Find Full Text PDF

The study was aimed to investigate the possible effects of 8-chloroadenosine 3', 5'-monophosphate (8-Cl-cAMP) on the multiple myeloma cells. The multiple myeloma cell line RPMI8226 was used as in vitro models. The effect on growth inhibition of RPMI8226 cells was evaluated by cell growth and viability curve.

View Article and Find Full Text PDF

Objective: To investigate the molecular mechanisms of the expression regulation of retinoic acidinduced gene G (RIG-G) by interferon alpha (IFNalpha).

Methods: RIG-G promoter region was analyzed by bioinformatics. The functional activities of RIG-G promoter with or without IFNalpha were detected by luciferase reporter assay and electrophoretic mobility shift assay (EMSA).

View Article and Find Full Text PDF

The RIG-G gene, originally isolated from an acute promyelocytic leukemia cell line NB4, codes for a 60-kDa cytoplasmic protein that is induced by all-trans retinoic acid (ATRA) treatment along with the induction of morphological differentiation of NB4 cells. Here, we provide evidence that ectopic expression of Rig-G in U937 cells can lead to a significant accumulation of cells at G(1)/S transition. Growth arrest seems to occur by modulating several major cell cycle regulatory players.

View Article and Find Full Text PDF

Objective: To explore the molecular mechanism of APL cell resistance to ATRA.

Methods: The ATRA sensitive and resistant APL cell lines, NB4 and NB4-R1, were used as in vitro models. The effects of specific inhibitors and activators of adenylate cyclase (AC) and phosphodiesterase (PDE) on ATRA-induced differentiation was evaluated by cell morphology, cell surface antigen expression and nitroblue-tetrazolium (NBT) reduction assays.

View Article and Find Full Text PDF

Objective: To investigate the potential effects of arsenic trioxide (As(2)O(3)) combined with 8-(4-chlorophenylthio) adenosine 3', 5'-cyclic monophosphate (8-CPT-cAMP) on the retinoic acid (RA)-resistant acute promyelocytic leukemia (APL) cells.

Methods: The RA resistant APL cell lines NB4-R1 and NB4-R2 were used as in vitro models. The effect of As(2)O(3) and/or 8-CPT-cAMP was evaluated according to cellular morphology, cell surface antigen and nitroblue-tetrazolium (NBT) assay.

View Article and Find Full Text PDF