ACS Appl Mater Interfaces
December 2024
Porous silicon-carbon (Si-C) nanocomposites exhibit high specific capacity and low electrode strain, positioning them as promising next-generation anode materials for lithium-ion batteries (LIBs). However, nanoscale Si's poor dispersibility and severe interfacial side reactions historically hamper battery performance. Inspired by irrigation systems, this study employs a charge-driven Si dispersion and stepwise assembly strategy to fabricate an open-/closed-pore hybrid porous Si-C composite.
View Article and Find Full Text PDFSilicon (Si) is a promising anode material for next-generation lithium-ion batteries (LIBs) due to its high specific capacity and abundance. However, challenges such as significant volume expansion during cycling and poor electrical conductivity hinder its large-scale application. In this study, the multifunction of sodium polyacrylate (PAAS) utilized to develop a hierarchical porous silicon-carbon anode (Si/SiO@C) through a simple and efficient method.
View Article and Find Full Text PDFFabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries. Herein, we report a unique silicon-carbon composite fabricated by uniformly dispersing amorphous Si nanodots (SiNDs) in carbon nanospheres (SiNDs/C) that are welded on the wall of the macroporous carbon framework (MPCF) by vertical graphene (VG), labeled as MPCF@VG@SiNDs/C. The high dispersity and amorphous features of ultrasmall SiNDs (~ 0.
View Article and Find Full Text PDFFe O is widely investigated as an anode for ambient sodium-ion batteries (SIBs), but its electrochemical properties in the wide operation-temperature range have rarely been studied. Herein, the Fe O nanoparticles, which are well encapsulated by carbon nanolayers, are uniformly dispersed on the graphene basal plane (named Fe O /C@G) to be used as the anode for SIBs. The existence of graphene can reduce the size of Fe O /C nanoparticles from 150 to 80 nm and greatly boost charge transport capability of electrode, resulting in an obvious size decrease of superparamagnetic Fe nanoparticles generated from the conversion reaction from 5 to 2 nm.
View Article and Find Full Text PDFWith rapidly increasing demand for high energy density, silicon (Si) is greatly expected to play an important role as the anode material of lithium-ion batteries (LIBs) due to its high specific capacity. However, large volume expansion for silicon during the charging process is still a serious problem influencing its cycling stability. Here, a Si/C composite of vertical graphene sheets/silicon/carbon/graphite (VGSs@Si/C/G) is reported to address the electrochemical stability issues of Si/graphite anodes, which is prepared by adhering Si nanoparticles on graphite particles with chitosan and then in situ growing VGSs by thermal chemical vapor deposition.
View Article and Find Full Text PDFFeline panleukopenia (FPL) is a highly contagious acute infectious disease caused by feline parvovirus (FPV). FPV has also been found in giant pandas with clinical signs of vomiting and mild diarrhea, posing a threat to this vulnerable species. Cleaning and disinfection may be one of the most efficacious ways to prevent FPV spread in the habitat of giant pandas.
View Article and Find Full Text PDFN -methyladenosine (m A) modification is the most common and reversible posttranscriptional modification of RNA in eukaryotes, which is mainly regulated by methyltransferase, demethylase, and specific binding protein. The replication of the virus and host immune response to the virus are affected by m A modification. In different kinds of viruses, m A modification has two completely opposite regulatory functions.
View Article and Find Full Text PDFAntiangiogenic therapy is widely administered in many cancers, and the antiangiogenic drug sorafenib offers moderate benefits in advanced hepatocellular carcinoma (HCC). However, antiangiogenic therapy can also lead to hypoxia-driven angiogenesis and immunosuppression in the tumor microenvironment (TME) and metastasis. Here, we report the synthesis and evaluation of NanoMnSor, a tumor-targeted, nanoparticle drug carrier that efficiently codelivers oxygen-generating MnO and sorafenib into HCC.
View Article and Find Full Text PDFAbnormal tumour vasculature has a significant impact on tumour progression and response to therapy. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis and, thus, can be delivered to normalize tumour vasculature. However, a NO-delivery system with a prolonged half-life and a sustained release mechanism is currently lacking.
View Article and Find Full Text PDF