The ion momentum distribution in the x-ray-induced dissociative photoionization of molecules is investigated, treating the ionization analytically under the Born-Oppenheimer approximation and simulating numerically the ion motion via the Schrödinger equation. The ion-photoelectron entanglement transfers information of the electronic interference to the ion dynamics. As a consequence, the ion momentum distributions of dissociative molecular photoionization present Young's double-slit interference when the photoelectron emission angle is fixed.
View Article and Find Full Text PDFRecently two-center interference in single-photon molecular ionization was employed to observe a zeptosecond time delay due to the photon propagation of the internuclear distance in a molecule [Grundmann et al., Science 370, 339 (2020)SCIEAS0036-807510.1126/science.
View Article and Find Full Text PDFInteraction of a strong laser pulse with matter transfers not only energy but also linear momentum of the photons. Recent experimental advances have made it possible to detect the small amount of linear momentum delivered to the photoelectrons in strong-field ionization of atoms. We present numerical simulations as well as an analytical description of the subcycle phase (or time) resolved momentum transfer to an atom accessible by an attoclock protocol.
View Article and Find Full Text PDFWe establish a generalized picture of the phase sensitivity of laser-induced directional bond breaking using the H_{2} molecule as the example. We show that the well-known proton ejection anisotropy measured with few-cycle pulses as a function of their carrier-envelope phases arises as an amplitude modulation of an intrinsic anisotropy that is sensitive to the laser phase at the ionization time and determined by the molecule's electronic structure. Our work furthermore reveals a strong electron-proton correlation that may open up a new approach to experimentally accessing the laser-sub-cycle intramolecular electron dynamics also in larger molecules.
View Article and Find Full Text PDFWe demonstrate the possibility of realizing Young's double-slit interference in a hydrogen atom via ab initio simulations. By exposing the hydrogen atom to a high-frequency intensive laser pulse, the bound state distorts into a dichotomic Kramers-Henneberger state whose photoelectron momentum distribution imprints a double-slit interference structure. The dichotomic hydrogen atom presents molecular peculiarities, such as charge-resonance enhanced ionization, electron spin flipping due to the non-Abelian Berry phase.
View Article and Find Full Text PDFWe experimentally observe the bond stretching time of one-photon and net-two-photon dissociation pathways of singly ionized H_{2} molecules driven by a polarization-skewed femtosecond laser pulse. By measuring the angular distributions of the ejected photoelectron and nuclear fragments in coincidence, the cycle-changing polarization of the laser field enables us to clock the photon-ionization starting time and photon-dissociation stopping time, analogous to a stopwatch. After the single ionization of H_{2}, our results show that the produced H_{2}^{+} takes almost the same time in the one-photon and net-two-photon dissociation pathways to stretch to the internuclear distance of the one-photon coupled dipole-transition between the ground and excited electronic states.
View Article and Find Full Text PDFThe generation of ultrarelativistic polarized positrons during the interaction of an ultrarelativistic electron beam with a counterpropagating two-color petawatt laser pulse is investigated theoretically. Our Monte Carlo simulation, based on a semiclassical model, incorporates photon emissions and pair productions, using spin-resolved quantum probabilities in the local constant field approximation, and describes the polarization of electrons and positrons for the pair production and photon emission processes, as well as the classical spin precession in between. The main reason for the polarization is shown to be the spin asymmetry of the pair production process in strong external fields, combined with the asymmetry of the two-color laser field.
View Article and Find Full Text PDFPhys Rev Lett
April 2017
The exact nondipole Volkov solutions to the Schrödinger equation and Pauli equation are found, based on which a strong field theory beyond the dipole approximation is built for describing the nondipole effects in nonrelativistic laser driven electron dynamics. This theory is applied to investigate momentum partition laws for multiphoton and tunneling ionization and explicitly shows that the complex interplay of a laser field and Coulomb action may reverse the expected photoelectron momentum along the laser propagation direction. The magnetic-spin coupling does not bring observable effects on the photoelectron momentum distribution and can be neglected.
View Article and Find Full Text PDFThe carrier envelope phase (CEP) is a crucial parameter for a few-cycle laser pulse since it substantially determines the laser waveform. Stepping forward from infrared to extreme ultraviolet (EUV) pulses, we propose a strategy to directly characterize the CEP of an isolated attosecond pulse (IAP) by numerically simulating the tunneling ionization of a hydrogen atom in a combined IAP and phase-stabilized circularly polarized IR laser pulse. The fine modulations of the combined laser fields, due to the variation of the CEP of the IAP, are exponentially enlarged onto the distinct time-dependent tunneling ionization rate.
View Article and Find Full Text PDFAn intense phase-controlled orthogonally polarized two-color ultrashort laser pulse is used to singly ionize and dissociate H_{2} into a neutral hydrogen atom and a proton. Emission-direction and kinetic-energy dependent asymmetric dissociation of H_{2} is observed as a function of the relative phase of the orthogonally polarized two-color pulse. Significant asymmetric proton emission is measured in the direction between two polarization axes.
View Article and Find Full Text PDF