Publications by authors named "Peilin Ye"

Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application.

View Article and Find Full Text PDF

Purpose: Natural orifice specimen extraction surgery (NOSES) has attracted attention because of its minimal invasiveness. This meta-analysis compared inflammatory response profiles and infectious complications between colorectal cancer (CRC) patients treated with NOSES and those treated with conventional laparoscopy (CL).

Methods: Seven medical databases were searched up to February 2024.

View Article and Find Full Text PDF

Antimony (Sb) pollution in surface water and soil has earned extensive attention. Our previous study synthesized a new class of alumina supported Fe-Mn binary oxide (Fe-Mn@AlO) and found that MnO in the composite oxidized Sb(III) to Sb(V) and FeOOH and AlO played an indispensable role in adsorption of Sb(III) and Sb(V). This study further explored the removal of Sb in surface water and in situ sequestration of Sb in Sb-contaminated field soil via Fe-Mn@AlO.

View Article and Find Full Text PDF

Urease-producing bacteria (UPB) provide inorganic nitrogen for primary producers by hydrolyzing urea, and play an important role in marine nitrogen cycle. However, there is still an incomplete understanding of UPB and their ecological functions in the cultivation environment of the red macroalgae Gracilariopsis lemaneiformis. This study comprehensively analyzed the diversity of culturable UPB and explored their effects on urea uptake by G.

View Article and Find Full Text PDF

N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria of the red macroalgae , along with its involvement in biofilm formation and regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL signal molecules produced by epiphytic bacteria.

View Article and Find Full Text PDF