Improving the aggregation and penetration in tumor sites increases the anti-tumor efficacy of nanomedicine. In the current study, we designed cyclodextrin modified PLGA nanoparticles loaded with paclitaxel to elevate the accumulation and prolong circulation of chemotherapy drugs . The PLGA nanoparticles loaded with paclitaxel (PTX PLGA NPs) and cyclodextrin (CD) modified PLGA nanoparticles loaded with paclitaxel (PTX PLGA/CD NPs) were prepared using the emulsification solvent evaporation method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Conductive hydrogels have shown great promise in flexible electronics, but their practical applications may be impeded by the time-consuming and energy-consuming polymerization process. We proposed a sodium lignosulfonate-Fe (SLS-Fe) strategy to address this challenge and took advantage of carboxymethyl cellulose (CMC) and poly(acrylic acid) to prepare the CMC/PAA/Fe/LiCl interpenetrating conductive hydrogels with good self-healing properties, antifreezing properties, and a 6-fold increase in conductivity in this study. The hydrogel-based flexible strain sensors demonstrated a broad detection range (400%), high sensitivity (GF = 6.
View Article and Find Full Text PDFC/EBPα plays a key role in specifying myeloid lineage development. HoxA9 is expressed in myeloid progenitors, with its level diminishing during myeloid maturation, and HOXA9 is over-expressed in a majority of acute myeloid leukemia cases, including those expressing NUP98-HOXD13. The objective of this study was to determine whether HoxA9 directly represses Cebpa gene expression.
View Article and Find Full Text PDFCancer Discov
May 2019
Despite the important role of the PI3K/AKT/mTOR axis in the pathogenesis of cancer, to date there have been few functional oncogenic fusions identified involving the genes. A 12-year-old female with a histopathologically indeterminate epithelioid neoplasm was found to harbor a novel fusion between the and genes. Through expanded use access, she became the first pediatric patient to be treated with the oral ATP-competitive pan-AKT inhibitor ipatasertib.
View Article and Find Full Text PDFThe DOT1L histone H3 lysine 79 (H3K79) methyltransferase plays an oncogenic role in MLL-rearranged leukemogenesis. Here, we demonstrate that, in contrast to MLL-rearranged leukemia, DOT1L plays a protective role in ultraviolet radiation (UVR)-induced melanoma development. Specifically, the DOT1L gene is located in a frequently deleted region and undergoes somatic mutation in human melanoma.
View Article and Find Full Text PDFDespite major advances in understanding the genetics and epigenetics of acute myelogenous leukemia, there is still a great need to develop more specific and effective therapies. High throughput approaches involving either genetic approaches or small molecule inhibitor screens are beginning to identify promising new therapeutic targets.
View Article and Find Full Text PDFHyperactivation of the mTOR pathway impairs hematopoietic stem cell (HSC) functions and promotes leukemogenesis. mTORC1 and mTORC2 differentially control normal and leukemic stem cell functions. mTORC1 regulates p70 ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding (eIF4E-binding) protein 1 (4E-BP1), and mTORC2 modulates AKT activation.
View Article and Find Full Text PDFPRDM16 is a transcription co-factor that plays critical roles in development of brown adipose tissue, as well as maintenance of adult hematopoietic and neural stem cells. Here we report that PRDM16 is a histone H3K4 methyltransferase on chromatin. Mutation in the N-terminal PR domain of PRDM16 abolishes the intrinsic enzymatic activity of PRDM16.
View Article and Find Full Text PDFDrug resistance is a growing problem that necessitates new strategies to combat pathogens. Neutrophil phagocytosis and production of intracellular ROS, in particular, has been shown to cooperate with antibiotics in the killing of microbes. This study tested the hypothesis that p85α, the regulatory subunit of PI3K, regulates production of intracellular ROS.
View Article and Find Full Text PDFAn acquired somatic mutation at codon 816 in the KIT receptor tyrosine kinase is associated with poor prognosis in patients with systemic mastocytosis and acute myeloid leukemia (AML). Treatment of leukemic cells bearing this mutation with an allosteric inhibitor of p21-activated kinase (Pak) or its genetic inactivation results in growth repression due to enhanced apoptosis. Inhibition of the upstream effector Rac abrogates the oncogene-induced growth and activity of Pak.
View Article and Find Full Text PDFErythropoiesis is a dynamic, multistep process whereby hematopoietic stem cells differentiate toward a progressively committed erythroid lineage through intermediate progenitors. Although several downstream signaling molecules have been identified that regulate steady-state erythropoiesis, the major regulators under conditions of stress remain poorly defined. Rho kinases (ROCKs) belong to a family of serine/threonine kinases.
View Article and Find Full Text PDFThe deletion of phenylalanine 1486 (F1486del) in the human cardiac voltage-gated sodium channel (hNav1.5) is associated with fatal long QT (LQT) syndrome. In this study we determined how F1486del impairs the functional properties of hNav1.
View Article and Find Full Text PDFIntracellular mechanism(s) that contribute to promiscuous signaling via oncogenic KIT in systemic mastocytosis and acute myelogenous leukemia are poorly understood. We show that SHP2 phosphatase is essential for oncogenic KIT-induced growth and survival in vitro and myeloproliferative disease (MPD) in vivo. Genetic disruption of SHP2 or treatment of oncogene-bearing cells with a novel SHP2 inhibitor alone or in combination with the PI3K inhibitor corrects MPD by disrupting a protein complex involving p85α, SHP2, and Gab2.
View Article and Find Full Text PDFWe show that loss of p85α inhibits the growth and maturation of mast cells, whereas loss of p85β enhances this process. Whereas restoring the expression of p85α in P85α(-/-) cells restores these functions, overexpression of p85β has the opposite effect. Consistently, overexpression of p85β in WT mast cells represses KIT-induced proliferation and IL-3-mediated maturation by inhibiting the expression of Microphthalmia transcription factor.
View Article and Find Full Text PDFGain-of-function mutations in KIT receptor in humans are associated with gastrointestinal stromal tumors, systemic mastocytosis and acute myelogenous leukemia. The intracellular signals that contribute to oncogenic KIT-induced myeloproliferative disease (MPD) are poorly understood. Here, we show that oncogenic KITD814V-induced MPD occurs in the absence of ligand stimulation.
View Article and Find Full Text PDFStem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1(A) PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α.
View Article and Find Full Text PDFWe show constitutive activation of Rho kinase (ROCK) in cells bearing oncogenic forms of KIT, FLT3, and BCR-ABL, which is dependent on PI3K and Rho GTPase. Genetic or pharmacologic inhibition of ROCK in oncogene-bearing cells impaired their growth as well as the growth of acute myeloid leukemia patient-derived blasts and prolonged the life span of mice bearing myeloproliferative disease. Downstream from ROCK, rapid dephosphorylation or loss of expression of myosin light chain resulted in enhanced apoptosis, reduced growth, and loss of actin polymerization in oncogene-bearing cells leading to significantly prolonged life span of leukemic mice.
View Article and Find Full Text PDFThe growth and maturation of bone marrow-derived mast cells (BMMCs) from precursors are regulated by coordinated signals from multiple cytokine receptors, including KIT. While studies conducted using mutant forms of these receptors lacking the binding sites for Src family kinases (SFKs) and phosphatidylinositol-3-kinase (PI3K) suggest a role for these signaling molecules in regulating growth and survival, how complete loss of these molecules in early BMMC progenitors (MCps) impacts maturation and growth during all phases of mast cell development is not fully understood. We show that the Lyn SFK and the p85α subunit of class I(A) PI3K play opposing roles in regulating the growth and maturation of BMMCs in part by regulating the level of PI3K.
View Article and Find Full Text PDFMast cell maturation is poorly understood. We show that enhanced PI3K activation results in accelerated maturation of mast cells by inducing the expression of microphthalmia transcription factor (Mitf). Conversely, loss of PI3K activation reduces the maturation of mast cells by inhibiting the activation of AKT, leading to reduced Mitf but enhanced Gata-2 expression and accumulation of Gr1(+)Mac1(+) myeloid cells as opposed to mast cells.
View Article and Find Full Text PDFObjective: Src family kinases (SFK) have been implicated in regulating growth factor and integrin-induced proliferation, migration, and gene expression in multiple cell types. However, little is known about the role of these kinases in the growth, homing, and engraftment potential of hematopoietic stem and progenitor cells.
Results: Here we show that loss of hematopoietic-specific SFKs Hck, Fgr, and Lyn results in increased number of Sca-1(+)Lin(-) cells in the bone marrow, which respond differentially to cytokine-induced growth in vitro and manifest a significant defect in the long-term repopulating potential in vivo.
Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi
March 2003
Background: To investigate whether Borna disease virus (BDV) infection is related to the schizophrenic patients from China.
Methods: A reliable Western-blot method for detection of BDV-p24 antibody was established by adjusting the reaction conditions of BDV-p24 recombinant protein and specific antibodies. The sera of schizophrenic patients and normal controls from Heilongjiang Province were screened for specific BDV-p24 antibody by this method, and the BDV-p24 antibody positive sera were confirmed by the Western-blot method with sera-GST protein absorption.