Publications by authors named "Peili Gu"

Background: Recent studies have confirmed that B cell-related genes CD20 and FCRL5 may be involved in the pathogenesis of autoimmune thyroid diseases (AITDs). However, there is a lack of comprehensive genetic susceptibility studies on this subject.

Objective: The purpose of this study was to investigate the relationship of CD20 and FCRL5 gene polymorphisms with AITD susceptibility.

View Article and Find Full Text PDF

Malignant cancers must activate telomere maintenance mechanisms to achieve replicative immortality. Mutations in the human Protection of Telomeres 1 (POT1) gene are frequently detected in cancers with abnormally long telomeres, suggesting that the loss of POT1 function disrupts the regulation of telomere length homeostasis to promote telomere elongation. However, our understanding of the mechanisms leading to elongated telomeres remains incomplete.

View Article and Find Full Text PDF

Human shelterin components POT1 and TPP1 form a stable heterodimer that protects telomere ends from ATR-dependent DNA damage responses and regulates telomerase-dependent telomere extension. Mice possess two functionally distinct POT1 proteins. POT1a represses ATR/CHK1 DNA damage responses and the alternative non-homologous end-joining DNA repair pathway while POT1b regulates C-strand resection and recruits the CTC1-STN1-TEN1 (CST) complex to telomeres to mediate C-strand fill-in synthesis.

View Article and Find Full Text PDF

Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres.

View Article and Find Full Text PDF

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach.

View Article and Find Full Text PDF

Coats plus (CP) is a rare autosomal recessive disorder caused by mutations in CTC1, a component of the CST (CTC1, STN1, and TEN1) complex important for telomere length maintenance. The molecular basis of how CP mutations impact upon telomere length remains unclear. The CP CTC1 mutation has been previously shown to disrupt telomere maintenance.

View Article and Find Full Text PDF

Mammalian shelterin proteins POT1 and TPP1 form a stable heterodimer that protects chromosome ends and regulates telomerase-mediated telomere extension. However, how POT1 interacts with TPP1 remains unknown. Here we present the crystal structure of the C-terminal portion of human POT1 (POT1C) complexed with the POT1-binding motif of TPP1.

View Article and Find Full Text PDF

Objective: To explore the potential association between the serum levels of 25-hydroxyvitamin D [25(OH)D] and carotid atherosclerosis in patients with type 2 diabetes.

Material And Methods: Three hundred and fifty patients with type 2 diabetes were enrolled in this study in Shanghai, China. B-mode ultrasound was used to detect carotid plaques as indicators of atherosclerosis and measure carotid artery intima-media wall thickness (C-IMT) at two sites of carotid artery.

View Article and Find Full Text PDF

SLX4 interacts with several endonucleases to resolve structural barriers in DNA metabolism. SLX4 also interacts with telomeric protein TRF2 in human cells. The molecular mechanism of these interactions at telomeres remains unknown.

View Article and Find Full Text PDF

Hypovitaminosis D is highly prevalent in type 2 diabetes. The aim of this study is to determine the serum levels of 25-hydroxyvitamin D [25(OH)D] in type 2 diabetic patients with and without mild cognitive impairment (MCI), and examine the relationship of 25(OH)D and MCI with other clinical factors. One hundred and sixty-five diabetic patients were enrolled in this study.

View Article and Find Full Text PDF

Coats plus is a rare recessive disorder characterized by intracranial calcifications, hematological abnormalities, and retinal vascular defects. This disease results from mutations in CTC1, a member of the CTC1-STN1-TEN1 (CST) complex critical for telomere replication. Telomeres are specialized DNA/protein structures essential for the maintenance of genome stability.

View Article and Find Full Text PDF

Human single-strand (ss) DNA binding proteins 1 and 2 (hSSB1 and 2) are components of the hSSB1/2-INTS3-C9orf80 heterotrimeric protein complex shown to participate in DNA damage response and maintenance of genome stability. However, their roles at telomeres remain unknown. Here, we generated murine SSB1 conditional knockout mice and cells and found that mSSB1 plays a critical role in telomere end protection.

View Article and Find Full Text PDF

Unlabelled: The aim of this study was to evaluate the risk factors of mild cognitive impairment (MCI) in middle-aged patients with type 2 diabetes (T2DM).

Methods: Montreal Cognitive Assessment (MoCA) was applied as cognition assessment implement. One hundred and fifty-seven middle-aged type 2 diabetic patients were enrolled in this cross-section study (age 40~69, mean age 55 ± 7).

View Article and Find Full Text PDF

The proper maintenance of telomeres is essential for genome stability. Mammalian telomere maintenance is governed by a number of telomere binding proteins, including the newly identified CTC1-STN1-TEN1 (CST) complex. However, the in vivo functions of mammalian CST remain unclear.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play an important role in gene regulation for Embryonic Stem cells (ES cells), where they either down-regulate target mRNA genes by degradation or repress protein expression of these mRNA genes by inhibiting translation. Well known tables TargetScan and miRanda may predict quite long lists of potential miRNAs inhibitors for each mRNA gene, and one of our goals was to strongly narrow down the list of mRNA targets potentially repressed by a known large list of 400 miRNAs. Our paper focuses on algorithmic analysis of ES cells microarray data to reliably detect repressive interactions between miRNAs and mRNAs.

View Article and Find Full Text PDF

The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter.

View Article and Find Full Text PDF

Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres.

View Article and Find Full Text PDF

Background: MicroRNAS (miRNAS: a class of short non-coding RNAs) are emerging as important agents of post transcriptional gene regulation and integral components of gene networks. MiRNAs have been strongly linked to stem cells, which have a remarkable dual role in development. They can either continuously replenish themselves (self-renewal), or differentiate into cells that execute a limited number of specific actions (pluripotence).

View Article and Find Full Text PDF
Article Synopsis
  • Nanog and Oct4 are crucial transcription factors in embryonic stem (ES) cells, regulating their ability to remain undifferentiated and pluripotent.
  • Research revealed that Nanog and Oct4 form protein complexes that interact with various repression complexes, indicating they may work with these complexes to manage gene transcription.
  • A newly identified complex named NODE, containing specific proteins and histone deacetylase activity, is linked to controlling the expression of differentiation-related genes in ES cells, highlighting its role in determining cell fate.
View Article and Find Full Text PDF

Embryonic stem (ES) cells have great therapeutic potential because they are capable of indefinite self-renewal and have the potential to differentiate into over 200 different cell types that compose the human body. The switch from the pluripotent phenotype to a differentiated cell involves many complex signaling pathways including those involving LIF/Stat3 and the transcription factors Sox2, Nanog and Oct-4. Many nuclear receptors play an important role in the maintenance of pluripotence (ERRbeta, SF-1, LRH-1, DAX-1) repression of the ES cell phenotype (RAR, RXR, GCNF) and also the differentiation of ES cells (PPARgamma).

View Article and Find Full Text PDF

The pluripotent factor Oct4 is a key transcription factor that maintains embryonic stem (ES) cell self-renewal and is down-regulated upon the differentiation of ES cells and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, are involved in the regulation of Oct4 gene expression. Here we show that the orphan nuclear receptor GCNF initiates Oct4 repression and DNA methylation by the differential recruitment of MBD (methylated CpG binding domain) factors to the promoter.

View Article and Find Full Text PDF

Embryonic stem (ES) cell pluripotency and differentiation are controlled by a network of transcription factors and signaling molecules. Transcription factors such as Oct4 and Nanog are required for self-renewal and maintain the undifferentiated state of ES cells. Decreases in the expression of these factors indicate the initiation of differentiation of ES cells.

View Article and Find Full Text PDF

Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex.

View Article and Find Full Text PDF

Understanding the molecular mechanisms of the specific interaction between transcription factor proteins and DNA is key to comprehend the regulation of gene expression and to develop technologies to engineer transcription factors. Thus far, although there have been several attempts to elucidate protein-DNA interaction through amino acid-base recognition codes, sequence based profiles, or physical models of interaction, the greatest successes in engineering DNA binding specificity remain experimental. Here we present the first systematic evidence of correlated evolutionary pressure at interacting amino acid residues and DNA base-pairs in transcription factors, and show that it can be used to rationally engineer DNA binding specificity.

View Article and Find Full Text PDF