Publications by authors named "Peilan Liu"

As a widely studied model in the machine learning and data processing society, graph convolutional network reveals its advantage in non-grid data processing. However, existing graph convolutional networks generally assume that the node features can be fully observed. This may violate the fact that many real applications come with only the pairwise relationships and the corresponding node features are unavailable.

View Article and Find Full Text PDF

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered.

View Article and Find Full Text PDF

Passion fruit () is a perennial evergreen vine that grows mainly in tropical and subtropical regions due to its nutritional, medicinal and ornamental values. However, the molecular biology study of passion fruit is extremely hindered by the lack of an easy and efficient method for transformation. The protoplast transformation system plays a vital role in plant regeneration, gene function analysis and genome editing.

View Article and Find Full Text PDF

P1 is the first protein translated from the genomes of most viruses in the family , and it contains a C-terminal serine-protease domain that -cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus ) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif.

View Article and Find Full Text PDF

The genomic 5'-terminal regions of viruses in the family (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro).

View Article and Find Full Text PDF