Publications by authors named "Peijun P Shi"

The ubiquitin ligase Nedd4 has been proposed to regulate a number of signaling pathways, but its physiological role in mammals has not been characterized. Here we present an analysis of Nedd4-null mice to show that loss of Nedd4 results in reduced insulin-like growth factor 1 (IGF-1) and insulin signaling, delayed embryonic development, reduced growth and body weight, and neonatal lethality. In mouse embryonic fibroblasts, mitogenic activity was reduced, the abundance of the adaptor protein Grb10 was increased, and the IGF-1 receptor, which is normally present on the plasma membrane, was mislocalized.

View Article and Find Full Text PDF

Nedd4-2 has been proposed to play a critical role in regulating epithelial Na+ channel (ENaC) activity. Biochemical and overexpression experiments suggest that Nedd4-2 binds to the PY motifs of ENaC subunits via its WW domains, ubiquitinates them, and decreases their expression on the apical membrane. Phosphorylation of Nedd4-2 (for example by Sgk1) may regulate its binding to ENaC, and thus ENaC ubiquitination.

View Article and Find Full Text PDF

In mammals, the hormonal regulation of water homeostasis is mediated by the aquaporin-2 water channel (Aqp2) of the collecting duct (CD). Vasopressin induces redistribution of Aqp2 from intracellular vesicles to the apical membrane of CD principal cells, accompanied by increased water permeability. Mutations of AQP2 gene in humans cause both recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin.

View Article and Find Full Text PDF