ACS Appl Mater Interfaces
August 2024
Chemotherapy is one of the main treatments for oral squamous cell carcinoma (OSCC), especially as a combined modality approach with and after surgery or radiotherapy. Limited therapeutic efficiency and serious side effects greatly restrict the clinical performance of chemotherapeutic drugs. The development of smart nanomedicines has provided new research directions, to some extent.
View Article and Find Full Text PDFThe degeneration of dopaminergic neurons is a major contributor to the pathogenesis of mid-brain disorders. Clinically, cell therapeutic solutions, by increasing the neurotransmitter dopamine levels in the patients, are hindered by low efficiency and/or side effects. Here, a strategy using electromagnetized nanoparticles to modulate neural plasticity and recover degenerative dopamine neurons in vivo is reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
Conjugated polymer nanomaterials (CPNs), as optically and electronically active materials, hold promise for biomedical imaging and drug delivery applications. This review highlights the recent advances in the utilization of CPNs in theranostics. Specifically, CPN-based in vivo imaging techniques, including near-infrared (NIR) imaging, two-photon (TP) imaging, photoacoustic (PA) imaging, and multimodal (MM) imaging, are introduced.
View Article and Find Full Text PDFAnaerobic bacteria, such as Clostridium and Salmonella, can selectively invade and colonize in tumor hypoxic regions (THRs) and deliver therapeutic products to destroy cancer cells. Herein, we present an anaerobe nanovesicle mimic that can not only be activated in THRs but also induce hypoxia in tumors by themselves. Moreover, inspired by the oxygen metabolism of anaerobes, we construct a light-induced hypoxia-responsive modality to promote dissociation of vehicles and activation of bioreductive prodrugs simultaneously.
View Article and Find Full Text PDFA bioinspired photodetector with signal transmissible to neuron cells is fabricated. Photoisomerization of the dye molecules embedded in the ferroelectric polymer membrane achieves electric polarization change under visible light. The photodetector realizes high sensitivity, color recognition, transient response, and 3D visual detection with resolution of 25 000 PPI, and, impressively, directly transduces the signal to neuron cells.
View Article and Find Full Text PDFStimuli-responsive and imaging-guided drug delivery systems hold vast promise for enhancement of therapeutic efficacy. Here we report an adenosine-5'-triphosphate (ATP)-responsive and near-infrared (NIR)-emissive conjugated polymer-based nanocarrier for the controlled release of anticancer drugs and real-time imaging. We demonstrate that the conjugated polymeric nanocarriers functionalized with phenylboronic acid tags on surface as binding sites for ATP could be converted to the water-soluble conjugated polyelectrolytes in an ATP-rich environment, which promotes the disassembly of the drug carrier and subsequent release of the cargo.
View Article and Find Full Text PDFA light-activated hypoxia-responsive conjugated polymer-based nanocarrier is developed for efficiently producing singlet oxygen ((1) O2 ) and inducing hypoxia to promote release of its cargoes in tumor cells, leading to enhanced antitumor efficacy. This dual-responsive nanocarrier provides an innovative design guideline for enhancing traditional photodynamic therapeutic efficacy integrated with a controlled drug-release modality.
View Article and Find Full Text PDFHealthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion.
View Article and Find Full Text PDFNanoscale materials are now attracting a great deal of attention for biomedical applications. Conjugated polymer nanoparticles have remarkable photophysical properties that make them highly advantageous for biological fluorescence imaging. We report on conjugated polymer nanoparticles with phenylboronic acid tags on the surface for fluorescence detection of neurotransmitter dopamine in both living PC12 cells and brain of zebrafish larvae.
View Article and Find Full Text PDFA multifunctional nanocarrier for encapsulation and delivery of short interfering RNA (siRNA) has been realized using cationic fluorescent polymer core-shell nanoparticles. The nanocarrier has good biocompatibility and high transfection efficiency over the most popular transfection reagent, Lipofectamine 2000. Fluorescence resonance energy transfer within the nanocarrier provides a non-invasive and label-free method to track the intracellular release of siRNA.
View Article and Find Full Text PDF