Recent advances in proteomics and genomics have enabled discovery of thousands of previously nonannotated small open reading frames (smORFs) in genomes across evolutionary space. Furthermore, quantitative mass spectrometry has recently been applied to analysis of regulated smORF expression. However, bottom-up proteomics has remained relatively insensitive to membrane proteins, suggesting they may have been underdetected in previous studies.
View Article and Find Full Text PDFRecent advances in mass spectrometry-based proteomics have revealed translation of previously nonannotated microproteins from thousands of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes. Facile methods to determine cellular functions of these newly discovered microproteins are now needed. Here, we couple semiquantitative comparative proteomics with whole-genome database searching to identify two nonannotated, homologous cold shock-regulated microproteins in Escherichia coli K12 substr.
View Article and Find Full Text PDFHere we describe a new BODIPY-based membrane probe (1) that provides an alternative to dialkylcarbocyanine dyes, such as DiI-C18, that can be excited in the blue spectral region. Compound 1 has unbranched octadecyl chains at the 3,5-positions and a meso-amino function. In organic solvents, the absorption and emission maxima of 1 are determined mainly by solvent acidity and dipolarity.
View Article and Find Full Text PDFThe UV-vis electronic absorption and fluorescence emission properties of 8-halogenated (Cl, Br, I) difluoroboron dipyrrin (or 8-haloBODIPY) dyes and their 8-(C, N, O, S) substituted analogues are reported. The nature of the meso-substituent has a significant influence on the spectral band positions, the fluorescence quantum yields, and lifetimes. As a function of the solvent, the spectral maxima of all the investigated dyes are located within a limited wavelength range.
View Article and Find Full Text PDF8-Halogenated boradiaza-s-indacenes can be efficiently prepared from dipyrrylketones. The new dyes react smoothly with nucleophiles to yield N-, O-, and S-substituted chromophores, as well as transition-metal-catalyzed cross-coupling reactions. The nature of the new substitutent has a strong influence on the spectral properties of the dyes.
View Article and Find Full Text PDF