Publications by authors named "Peihua Wangyang"

The development of lead halide perovskite X-ray detectors has promising applications in medical imaging and security inspection but is hindered by poor long-term stability and drift of the dark current and photocurrent. Herein, we design a (CsMAFA)PbI-(CsMAFA)AgBiI double-layer perovskite film to assemble a self-powered flat-panel X-ray detector. The demonstrated X-ray detector achieves an outstanding self-powered sensitivity of 80 μC Gy cm under a 0 V bias.

View Article and Find Full Text PDF

All-inorganic CsPbI2Br inverted perovskite solar cells (PSCs) have drawn increasing attention because of their outstanding thermal stability and compatible process with tandem cells. However, relatively low open circuit voltage (Voc) has lagged their progress far behind theoretical limits. Herein, we introduce phenylmethylammonium iodide and 4-trifluoromethyl phenylmethylammonium iodide (CFPMAI) on the surface of a CsPbI2Br perovskite film and investigate their passivation effects.

View Article and Find Full Text PDF

Thin-film silicon solar cells (TSSC) has received great attention due to its advantages of low cost and eco-friendly. However, traditional single-layer patterned solar cells (SPSC) still fall short in light-trapping efficiency. This article presents an all layers patterned (ALP) conical nanostructured TSSC to enhance the low absorption caused by the thin absorption layers.

View Article and Find Full Text PDF

Based on graphene's phase modulation property and vanadium dioxide's amplitude modulation property, we developed an array reflector for terahertz frequencies that is individually adjustable. Starting with a theoretical analysis, we look into the effects of voltage on the Fermi level of graphene and temperature on the conductivity of vanadium dioxide, analyze the beam focusing characteristics, and finally link the controllable quantities with the reflected beam characteristics to independently regulate each cell in the array. The simulation findings demonstrate that the suggested array structure can precisely manage the focus point's position, intensity, and scattering degree and that, with phase compensation, it can control the wide-angle incident light.

View Article and Find Full Text PDF

Two-dimensional (2D) materials, which have attracted attention due to intriguing optical properties, form a promising building block in optical and photonic devices. This paper numerically investigates a tunable and anisotropic perfect absorber in a graphene-black phosphorus (BP) nanoblock array structure. The suggested structure exhibits polarization-dependent anisotropic absorption in the mid-infrared, with maximum absorption of 99.

View Article and Find Full Text PDF

Based on coupled-mode theory (CMT) and the finite-difference time-domain (FDTD) approach, we propose a graphene metasurface-based and multifunctional polarization beam splitter that is dynamically tunable. The structure, comprising two graphene strips at the top and bottom and four triangular graphene blocks in the center layer, can achieve triple plasma-induced transparency (PIT). In a single polarization state, the computational results reveal that synchronous or asynchronous six-mode electro-optical switching modulation may be performed by modifying the Fermi levels of graphene, with a maximum modulation degree of amplitude (MDA) of 97.

View Article and Find Full Text PDF

All-inorganic CsPbX (X = Cl, Br or I) perovskite nanocrystals have attracted extensive interest recently due to their exceptional optoelectronic properties. In an effort to improve the charge separation and transfer following efficient exciton generation in such nanocrystals, novel functional nanocomposites were synthesized by the growth of CsPbBr perovskite nanocrystals on two-dimensional MXene nanosheets. Efficient excited state charge transfer occurs between CsPbBr NCs and MXene nanosheets, as indicated by significant photoluminescence (PL) quenching and much shorter PL decay lifetimes compared with pure CsPbBr NCs.

View Article and Find Full Text PDF

2D planar structures of nonlayered wide-bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.

View Article and Find Full Text PDF

All-inorganic perovskite CsPbX (X = Cl, Br, or I) is widely used in a variety of photoelectric devices such as solar cells, light-emitting diodes, lasers, and photodetectors. However, studies to understand the flexible CsPbX electrical application are relatively scarce, mainly due to the limitations of the low-temperature fabricating process. In this study, all-inorganic perovskite CsPbBr films were successfully fabricated at 75 °C through a two-step method.

View Article and Find Full Text PDF

The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.

View Article and Find Full Text PDF

Zn-doped NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing material with excellent comprehensive performance, which could real-time detect and monitor ammonia (NH3) in the surrounding environment. The morphology and structure analysis indicated that the as-fabricated semiconductor films were composed of particles with diameters ranging from 80 to 160 nm, and each particle was composed of small crystalline grain with a narrow size about 20 nm, which was the face-centered cubic single crystal structure. X-ray diffraction peaks shifted toward lower angle, and the size of the lattice increased compared with undoped NiO, which demonstrated that zinc ions have been successfully doped into the NiO host structure.

View Article and Find Full Text PDF

Efficient light management for micromorph tandem solar cells is achieved in this Letter by the combined application of TiO(2) and SiO(x) interlayers. Here, TiO(2) is incorporated into a ZnO/a-Si interface as an antireflection layer and SiO(x) is incorporated into an a-Si/μc-Si interface as an intermediate reflecting layer. Solar cells with such architecture not only increase the light absorption but also reduce the mismatch losses of current between the top and bottom cells.

View Article and Find Full Text PDF

Here we report on an efficient light-coupling scheme with a periodic microstructured surface to enhance the performance of thin film silicon solar cells. The centerpiece of the surface structure is the hemispherical pit arrays (HPAs), which are fabricated using an inexpensive and scalable process. The integration of HPAs into micromorph tandem thin film silicon solar cells leads to superior broadband reflection suppression properties.

View Article and Find Full Text PDF