Inspired by the antifouling properties of scaly fish, the conventional silicone coating with phenylmethylsilicone oil (PSO/PDMS) composite coating was fabricated and modified with single layer polystyrene (PS) microsphere (PSO/PDMS-PS) arrays. The fish scale like micro-nano structures were fabricated on the surface of bio-inspired coating, which can reduce the contact area with the secreted protein membrane of fouling organisms effectively and prevent further adhesion between fouling organisms and bio-inspired coating. Meanwhile, PSO exuded to the coating surface has the similar function with mucus secreted by fish epidermis, which make the coating surface slithery and will be polished with the fouling organisms in turbulent waters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Gradient biomaterials have shown enormous potential in high-throughput screening of biomaterials and material-induced cell migration. To make the screening process more rapid and precise, improving the regularity of morphological structure and chemical modification on gradient biomaterials have attracted much attention. In this paper, we present a novel fabrication strategy to introduce ordered nanopattern arrays into gradient biomaterials, through combining surface-initiated atom transfer radical polymerization and inclined reactive-ion etching based on colloidal lithography.
View Article and Find Full Text PDFWe present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching.
View Article and Find Full Text PDFWe show morphology-patterned stripes modified by thermal-responsive polymer for smartly guiding flow motion of fluid in chips. With a two-step modification process, we fabricated PNIPAAm-modified Si stripes on silicon slides, which were employed as substrates for fluid manipulation in microchannels. When the system temperature switches between above and below the lower critical solution temperature (LCST) of PNIPAAm, the wettability of the substrates also switches between strong anisotropy and weak anisotropy, which resulted in anisotropic (even unidirectional) flow and isotropic flow behavior of liquid in microchannels.
View Article and Find Full Text PDFGeometric gradients within ordered micro/nanostructures exhibit unique wetting properties. Well-defined and ordered microsphere arrays with geometric gradient (OMAGG) are successfully fabricated through combining colloidal lithography and inclined reactive ion etching (RIE). During the inclined RIE, the graded etching rates in vertical direction of etcher chamber are the key to generating a geometric gradient.
View Article and Find Full Text PDFThis article shows morphology-patterned stripes as a new platform for directing flow guidance of the fluid in microfluidic devices. Anisotropic (even unidirectional) spreading behavior due to anisotropic wetting of the underlying surface is observed after integrating morphology-patterned stripes with a Y-shaped microchannel. The anisotropic wetting flow of the fluid is influenced by the applied pressure, dimensions of the patterns, including the period and depth of the structure, and size of the channels.
View Article and Find Full Text PDFWe report the flow behavior of water in microfluidic systems based on a chemically patterned anisotropic wetting surface. When water flows inside a microchannel on top of a micropatterned surface with alternating hydrophilic/hydrophobic stripes, it exhibits an anisotropic flowing characteristic owing to the anisotropic wettability; thus, the patterned surface acts as a microvalve for the microfluidic system. The anisotropic flow of water is influenced by the microscale features of the patterns and the dimensions of the microchannels.
View Article and Find Full Text PDFThe colonization ability of bacteria on biomaterial surfaces is influenced by the morphology of the bacteria and the nanotopography of the biomaterial. However, interactions between the bacterial morphology and nanotopography of biomaterials have not yet been completely elucidated. In this article, we quantitatively characterized the bacterial morphology to illuminate the integrated effects of polyethylene terephthalate (PET) nanopillar arrays on the colonization of bacteria cells with different shapes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2015
In this paper, Janus micropillar array (MPA) with fore-aft controllable wettability difference was demonstrated. With two-step modification process, we successfully decorate the Janus pillar skeletons with wettability-switchable polymer brush on one side and hydrophilic self-assembled monolayer on the other. Owing to the switchable wettability of the polymer brush, the patterned surface could switch between anisotropic wetting and isotropic wetting at different temperatures, which gives the possibility of coupling the well-designed surface with microfluidic channel to manipulate the microfluid motion.
View Article and Find Full Text PDFIn this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies.
View Article and Find Full Text PDF