Publications by authors named "Peigneux P"

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Continued solicitation of cognitive resources eventually leads to cognitive fatigue (CF), i.e., a decrease in cognitive efficiency that develops during sustained cognitive demands in conditions of constrained processing time, independently of sleepiness.

View Article and Find Full Text PDF

Introduction: Short post-learning breaks, lasting from 5 to 30 min, transiently enhance procedural motor memory performance in adults. However, the impact of activity type (active vs. passive) during the offline break on sequential motor performance remains poorly investigated in children.

View Article and Find Full Text PDF

Cognitive fatigue (CF) is a critical factor affecting performance and well-being. It can be altered in suboptimal sleep quality conditions, e.g.

View Article and Find Full Text PDF

Targeted memory reactivation (TMR), or the presentation of learning-related cues during sleep, has been shown to benefit memory consolidation for specific memory traces when applied during non-rapid eye movement (NREM) sleep. Prior studies suggest that TMR during rapid eye movement (REM) sleep may play a role in memory generalization processes, but evidence remains scarce. We tested the hypothesis that TMR exerts a differential effect on distinct mnemonic processes as a function of the sleep state (REM vs.

View Article and Find Full Text PDF

Motor skills dynamically evolve during practice and after training. Using magnetoencephalography, we investigated the neural dynamics underpinning motor learning and its consolidation in relation to sleep during resting-state periods after the end of learning (boost window, within 30 min) and at delayed time scales (silent 4 h and next day 24 h windows) with intermediate daytime sleep or wakefulness. Resting-state neural dynamics were investigated at fast (sub-second) and slower (supra-second) timescales using Hidden Markov modelling (HMM) and functional connectivity (FC), respectively, and their relationship to motor performance.

View Article and Find Full Text PDF

Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics.

View Article and Find Full Text PDF

Mind-wandering is a mental state in which attention shifts from the present environment or current task to internally driven, self-referent mental content. Homeostatic sleep pressure seems to facilitate mind-wandering as indicated by studies observing links between increased mind-wandering and impaired sleep. Nevertheless, previous studies mostly relied on cross-sectional measurements and self-reports.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how sleep affects motor adaptation, particularly in skills like typing, by examining brain activity during a new typing task on a mirrored keyboard.
  • Results indicate that participants showed better performance after a full night of sleep compared to staying awake, along with changes in brain activity, specifically reduced beta power and lower spectral slopes during the task.
  • Additionally, higher fast sleep spindle density after training was linked to improved motor adaptation, suggesting that sleep enhances the brain's ability to adapt to new motor tasks.
View Article and Find Full Text PDF

Functional connectivity (FC) during sleep has been shown to break down as non-rapid eye movement (NREM) sleep deepens before returning to a state closer to wakefulness during rapid eye movement (REM) sleep. However, the specific spatial and temporal signatures of these fluctuations in connectivity patterns remain poorly understood. This study aimed to investigate how frequency-dependent network-level FC fluctuates during nocturnal sleep in healthy young adults using high-density electroencephalography (hdEEG).

View Article and Find Full Text PDF

Belgium has one of the highest numbers of COVID-19 cases per 1 million inhabitants. The pandemic has led to significant societal changes with repercussions on sleep and on mental health. We aimed to investigate the effect of the first and the second wave of COVID-19 on the sleep of the Belgian populationWe launched two online questionnaires, one during the first lockdown (7240 respondents) and one during the second (3240 respondents), to test differences in self-reported clinical insomnia (as measured by the Insomnia Severity Index) and sleep habits during the two lockdowns in comparison with the pre-COVID period.

View Article and Find Full Text PDF

Retrieving previously stored information makes memory traces labile again and can trigger restabilization in a strengthened or weakened form depending on the reactivation condition. Available evidence for long-term performance changes upon reactivation of motor memories and the effect of post-learning sleep on their consolidation remains scarce, and so does the data on the ways in which subsequent reactivation of motor memories interacts with sleep-related consolidation. Eighty young volunteers learned (Day 1) a 12-element Serial Reaction Time Task (SRTT) before a post-training Regular Sleep (RS) or Sleep Deprivation (SD) night, either followed (Day 2) by morning motor reactivation through a short SRTT testing or no motor activity.

View Article and Find Full Text PDF

Dreams are often viewed as fascinating but irrelevant mental epihenomena of the sleeping mind with questionable functional relevance. Despite long hours of oneiric activity, and high individual differences in dream recall, dreams are lost into oblivion. Here, we conceptualize dreaming and dream amnesia as inherent aspects of the reactive and predictive homeostatic functions of sleep.

View Article and Find Full Text PDF

Evidence for sleep-dependent changes in microstructural neuroplasticity remains scarce, despite the fact that it is a mandatory correlate of the reorganization of learning-related functional networks. We investigated the effects of post-training sleep on structural neuroplasticity markers measuring standard diffusion tensor imaging (DTI), mean diffusivity (MD), and the revised biophysical neurite orientation dispersion and density imaging (NODDI), free water fraction (FWF), and neurite density (NDI) parameters that enable disentangling whether MD changes result from modifications in neurites or in other cellular components (e.g.

View Article and Find Full Text PDF

Sleep continuity and efficacy are essential for optimal cognitive functions. How sleep fragmentation (SF) impairs cognitive functioning, and especially cognitive fatigue (CF), remains elusive. We investigated the impact of induced SF on CF through the TloadDback task, measuring interindividual variability in working memory capacity.

View Article and Find Full Text PDF

Lucid dreaming (LD) is a mental state in which we realize not being awake but are dreaming while asleep. It often involves vivid, perceptually intense dream images as well as peculiar kinesthetic sensations, such as flying, levitating, or out-of-body experiences. LD is in the cross-spotlight of cognitive neuroscience and sleep research as a particular case to study consciousness, cognition, and the neural background of dream experiences.

View Article and Find Full Text PDF

Slow frequency activity during non-rapid eye movement (NREM) sleep emerges from synchronized activity of widely distributed thalamo-cortical and cortico-cortical networks, reflecting homeostatic and restorative properties of sleep. Slow frequency activity exhibits a reactive nature, and can be increased by acoustic stimulation. Although non-invasive brain stimulation is a promising technique in basic and clinical sleep research, sensory stimulation studies focusing on modalities other than the acoustic are scarce.

View Article and Find Full Text PDF

Previous research has shown that resting-state functional connectivity (rsFC) between different brain regions (seeds) is related to motor learning and motor memory consolidation. Using high-density electroencephalography (hdEEG), we addressed this question from a brain network perspective. Specifically, we examined frequency-dependent functional connectivity in resting-state networks from twenty-nine young healthy participants before and after they were trained on a motor sequence learning task.

View Article and Find Full Text PDF

Increasingly studied in a systematic manner since the 1970s, the cognitive processes of the brain taking place during sleeping periods remain an important object of scrutiny in the scientific community. In particular, sleep has been demonstrated to play a significant role for learning and memory consolidation processes, and sleep scientists have started unravelling its underlying neurophysiological mechanisms. However, sleep remains a multidimensional phenomenon, and many questions remain left open for future research.

View Article and Find Full Text PDF

Motor learning features rapid enhancement during practice then offline post-practice gains with the reorganization of related brain networks. We hypothesised that fast transient, sub-second variations in magnetoencephalographic (MEG) network activity during the resting-state (RS) reflect early learning-related plasticity mechanisms and/or interindividual motor variability in performance. MEG RS activity was recorded before and 20 min after motor learning.

View Article and Find Full Text PDF

Studies investigating motor learning in patients with multiple sclerosis (MS) disease highlighted that MS patients exhibit similar learning performance than healthy controls, but that learning can be hampered by the progression of MS eventually leading to impaired efficiency of subcortical-cortical networks. We aimed at investigating whether the long-term, overnight consolidation of sequential motor memories is preserved in MS disease. Thirty-one patients with MS and two healthy control groups (27 young and 14 middle age) were tested over two consecutive days using a serial reaction time task.

View Article and Find Full Text PDF

Sleep is known to benefit memory consolidation, but little is known about the contribution of sleep stages within the sleep cycle. The sequential hypothesis proposes that memories are first replayed during nonrapid-eye-movement (NREM or N) sleep and then integrated into existing networks during rapid-eye-movement (REM or R) sleep, two successive critical steps for memory consolidation. However, it lacks experimental evidence as N always precedes R sleep in physiological conditions.

View Article and Find Full Text PDF

State modeling of whole-brain electroencephalography (EEG) or magnetoencephalography (MEG) allows to investigate transient, recurring neurodynamical events. Two widely-used techniques are the microstate analysis of EEG signals and hidden Markov modeling (HMM) of MEG power envelopes. Both reportedly lead to similar state lifetimes on the 100 ms timescale, suggesting a common neural basis.

View Article and Find Full Text PDF

Mind wandering (MW) is a highly prevalent phenomenon despite its negative consequences on behavior. Current views about its origin share the idea that MW occurs due to changes in the executive functions system. Here, we argue that not all instances of MW are necessarily related to changes in that system.

View Article and Find Full Text PDF

The extent of high-level perceptual processing during sleep remains controversial. In wakefulness, perception of periodicities supports the emergence of high-order representations such as the pulse-like meter perceived while listening to music. Electroencephalography (EEG) frequency-tagged responses elicited at envelope frequencies of musical rhythms have been shown to provide a neural representation of rhythm processing.

View Article and Find Full Text PDF