Publications by authors named "Peifang Xu"

Purpose: This study aimed to propose a fully automatic eyelid measurement system and compare the contours of both the upper and lower eyelids of normal individuals according to age and gender.

Design: Prospective study.

Participants: Five hundred and forty healthy Chinese aged 0 to 79 years in a tertiary hospital were included.

View Article and Find Full Text PDF

Infectious keratitis is among the major causes of global blindness. Anterior segment optical coherence tomography (AS-OCT) images allow the characterizing of cross-sectional structures in the cornea with keratitis thus revealing the severity of inflammation, and can also provide 360-degree information on anterior chambers. The development of image analysis methods for such cases, particularly deep learning methods, requires a large number of annotated images, but to date, there is no such open-access AS-OCT image repository.

View Article and Find Full Text PDF

High-quality 3D corneal reconstruction from AS-OCT images has demonstrated significant potential in computer-aided diagnosis, enabling comprehensive observation of corneal thickness, precise assessment of morphological characteristics, as well as location and quantification of keratitis-affected regions. However, it faces two main challenges: (1) prevalent medical image segmentation networks often struggle to accurately process low-contrast corneal regions, which is a vital pre-processing step for 3D corneal reconstruction, and (2) there are no reconstruction methods that can be directly applied to AS-OCT sequences with 180-degree scanning. To combat these, we propose CSCM-CCA-Net, a simple yet efficient network for accurate corneal segmentation.

View Article and Find Full Text PDF
Article Synopsis
  • Visual acuity can be seriously affected by eye diseases, particularly fundus neovascularization diseases (FNDs), which are a major cause of vision loss globally.
  • Current treatments, mainly involving intravitreal injection of anti-VEGF drugs, face complications and effectiveness issues, leading to a need for improved therapies.
  • Nanomedicine offers innovative solutions for FND treatment by enhancing drug delivery and release through advanced nanocarriers, with a focus on various types like polymer, lipid, and inorganic nanoparticles, while addressing the challenges and future prospects in this field.
View Article and Find Full Text PDF

Open globe injuries (OGIs) demand immediate attention to prevent further complications and improve vision prognosis. Herein, we developed a thermo/photo dual-crosslinking injectable hydrogel, HBC_m_Arg, for rapidly sealing OGIs in emergency ophthalmic cases. HBC_m_Arg was prepared with arginine and methacrylic anhydride modified hydroxybutyl chitosan (HBC).

View Article and Find Full Text PDF

Artificial Intelligence (AI) has found rapidly growing applications in ophthalmology, achieving robust recognition and classification in most kind of ocular diseases. Ophthalmic surgery is one of the most delicate microsurgery, requiring high fineness and stability of surgeons. The massive demand of the AI assist ophthalmic surgery will constitute an important factor in boosting accelerate precision medicine.

View Article and Find Full Text PDF

Introduction: Tarsal plate repair is the major challenge of eyelid reconstruction for the oculoplastic surgeon. The ideal synthetic tarsal plate substitute should imitate the microstructure and mechanical strength of the natural eyelid. The aim of this work was to develop a novel bionic substitute for eyelid reconstruction.

View Article and Find Full Text PDF

Infectious keratitis (IK) is a common ophthalmic emergency that requires prompt and accurate treatment. This study aimed to propose a deep learning (DL) system based on slit lamp images to automatically screen and diagnose infectious keratitis. This study established a dataset of 2757 slit lamp images from 744 patients, including normal cornea, viral keratitis (VK), fungal keratitis (FK), and bacterial keratitis (BK).

View Article and Find Full Text PDF

Ocular alkali burn is a serious ophthalmic emergency. Highly penetrative alkalis cause strong inflammatory responses leading to persistent epithelial defects, acute corneal perforation and severe scarring, and thereby persistent pain, loss of vision and cicatricial sequelae. Early and effective anti-inflammation management is vital in reducing the severity of injury.

View Article and Find Full Text PDF

Infectious keratitis is one of the common ophthalmic diseases and also one of the main blinding eye diseases in China, hence rapid and accurate diagnosis and treatment for infectious keratitis are urgent to prevent the progression of the disease and limit the degree of corneal injury. Unfortunately, the traditional manual diagnosis accuracy is usually unsatisfactory due to the indistinguishable visual features. In this paper, we propose a novel end-to-end fully convolutional network, named Class-Aware Attention Network (CAA-Net), for automatically diagnosing infectious keratitis (normal, viral keratitis, fungal keratitis, and bacterial keratitis) using corneal photographs.

View Article and Find Full Text PDF

Background: Clinical application of artificial intelligence is limited due to the lack of interpretability and expandability in complex clinical settings. We aimed to develop an eye diseases screening system with improved interpretability and expandability based on a lesion-level dissection and tested the clinical expandability and auxiliary ability of the system.

Methods: The four-hierarchical interpretable eye diseases screening system (IEDSS) based on a novel structural pattern named lesion atlas was developed to identify 30 eye diseases and conditions using a total of 32,026 ultra-wide field images collected from the Second Affiliated Hospital of Zhejiang University, School of Medicine (SAHZU), the First Affiliated Hospital of University of Science and Technology of China (FAHUSTC), and the Affiliated People's Hospital of Ningbo University (APHNU) in China between November 1, 2016 to February 28, 2022.

View Article and Find Full Text PDF

The osteoarthritis (OA) symptoms cannot be fully remedied by using only a single functional component because of its complex pathogenesis. Herein, a MnO nanozyme-encapsulated hydrogel was fabricated via dispersing bovine serum albumin (BSA)-MnO (BM) nanoparticles (NPs) into a hyaluronic acid (HA)/platelet-rich plasma (PRP) gel network crosslinked by Schiff base reaction. Due to the self-healing and pH-responsive properties of Schiff base bonds, the hydrogel not only functioned as viscosupplementation but also exhibited pH-responsive release of BM NPs and growth factors in PRP.

View Article and Find Full Text PDF

A sight threatening, pterygium is a common proliferative and degenerative disease of the ocular surface. LncRNAs have been widely studied in the occurrence and development of various diseases, however, the study of lncRNAs in pterygium has just relatively lacking. In the present study, we performed the high-throughput RNA sequencing (HTS) technology to identify differentially expressed lncRNAs in pterygium.

View Article and Find Full Text PDF

Eyelid tarsus is a fibrocartilagenous extracellular matrix around meibomian glands providing structural support to eyelids and play important roles in the integrity of the ocular surface. There are no previous studies investigating the relationship between micro-structure and function of eyelid tarsus. To investigate the structure of extracellular matrix and the biomechanical properties of tarsus, rabbit tarsus were stained with hematoxylin and eosin (H&E), MASSON and Verhoeff's Van Gieson (EVG), distribution of collagen and elastin fibers in tarsus extracellular matrix were analyzed with scanning electron microscopy.

View Article and Find Full Text PDF

The modulation of inflammation in tissue microenvironment takes an important role in cartilage repair and regeneration. In this study, a novel hybrid scaffold was designed and fabricated by filling a reactive oxygen species (ROS)-scavenging hydrogel (RS Gel) into a radially oriented poly(lactide-co-glycolide) (PLGA) scaffold. The radially oriented PLGA scaffolds were fabricated through a temperature gradient-guided phase separation and freeze-drying method.

View Article and Find Full Text PDF

The biodegradable polymer microparticles with different surface morphology and chemical compositions may influence significantly the behaviors of cells, and thereby further the performance of tissue regeneration in vivo. In this study, multi-stage hierarchical textures of poly(D,L-lactic-co-glycolide) (PLGA)/PLGA-b-PEG (poly(ethylene glycol)) microspheres with a diameter as large as 50-100 μm are fabricated based on interfacial instability of an emulsion. The obtained fuzzy structures on the microspheres are sensitive to annealing, which are changed gradually to a smooth one after treatment at 37 °C for 6 d or 80 °C for 1 h.

View Article and Find Full Text PDF

Orbital implants with interconnected porous architecture had gained prominence, as they were capable of being colonized by fibrovascular tissue and minimizing complications. However, mechanical properties of orbital implant had received little attention among existing design philosophy. Herein, a compliant porous silicone scaffold was developed by gelatin porogen-leaching method and used as the orbital implant in this study.

View Article and Find Full Text PDF

Branched polyethylene (B-PE) elastomer was investigated for its potential medical application as a tarsus construct. The results showed that the B-PE and processed B-PE films or scaffolds did not exhibit noticeable cytotoxicity to the NIH3T3 fibroblasts and human vascular endothelial cells (ECs). The B-PE scaffolds with a pore size of 280-480 µm were prepared by using a gelatin porogen-leaching method.

View Article and Find Full Text PDF

Tissue-biomaterial interactions in different microenvironments influence significantly the repair and regeneration outcomes when a scaffold or construct is implanted. In order to elucidate this issue, a fibrin gel filled macroporous fibrin scaffold (fibrin-based scaffold) was fabricated by loading fibrinogen via a negative pressure method, following with thrombin crosslinking. The macroporous fibrin scaffold exhibited a porous structure with porosity of (88.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer related deaths worldwide. We have previously identified many differentially expressed genes (DEGs) from large scale pan-cancer dataset using the Cross-Value Association Analysis (CVAA) method. Here we focus on Progestin and AdipoQ Receptor 4 (PAQR4), a member of the progestin and adipoQ receptor (PAQR) family localized in the Golgi apparatus, to determine their clinical role and mechanism in the development of non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

Due to the poor self-repair capabilities of articular cartilage, chondral or osteochondral injuries are difficult to be recovered. In this study, an N-cadherin mimetic peptide sequence HAVDIGGGC (HAV) was conjugated to direct cell-cell interactions, and an aggrecanase-1 cleavable peptide sequence CRDTEGE-ARGSVIDRC (ACpep) was used to crosslink hyperbranched PEG-based multi-acrylate polymer (HBPEG) with cysteamine-modified chondroitin sulfate (Cys-CS), obtaining an aggrecanase-1 responsively degradable and HAV-conjugated hydrogel ((HAV-HBPEG)-CS-ACpep). A HBPEG-CS-ACpep hydrogel without the HAV motif was also prepared.

View Article and Find Full Text PDF

Hypoxia occurs naturally at high-altitudes and pathologically in hypoxic solid tumors. Here, we report that genes involved in various human cancers evolved rapidly in Tibetans and six Tibetan domestic mammals compared to reciprocal lowlanders. Furthermore, mA modified mRNA binding protein YTHDF1, one of evolutionary positively selected genes for high-altitude adaptation is amplified in various cancers, including non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

The regeneration of osteochondral defects faces great challenges because of the limited self-regenerative capabilities of cartilage tissues. In situ inductive regeneration can be realized using bioactive scaffolds combined with endogenous reparative cells. Cell migration could be significantly facilitated by scaffolds with oriented channels.

View Article and Find Full Text PDF

Capture of endothelial progenitor cells (EPCs) in situ has been considered as a promising strategy for the rapid endothelialization and long-term patency of artificial blood vessels and implant devices. In this study, a CD133 EPC capture surface was fabricated by grafting CD133 antibody (a more specific EPC surface marker than CD34) and Arg-Glu-Asp-Val (REDV) peptideon the methacrylate-grafted hyaluronic acid (MA-HA) and heparin-hybridized (MA-HA&Heparin) resisting layer. Vascular endothelial growth factor (VEGF) was further conjugated to the immobilized heparin.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions9ntn3lqlumfajv6t0s20olhet4e4c21): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once