Publications by authors named "Peidong Ren"

Electrochemical 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) offers a promising route to transform biomass into value-added chemicals. However, the competing oxygen evolution reaction (OER) greatly limits the HMFOR selectivity. Herein, we report a facile doping strategy to engineer oxygen intermediates adsorption on amorphous NiFe alloys to boost highly selective electrochemical HMF oxidation to produce 2,5-furandicarboxylic acid (FDCA), among which, amorphous Mn-doped NiFeB alloy displays a low HMFOR onset potential of 1.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems.

View Article and Find Full Text PDF

Constructing S-scheme heterojunction catalysts is a key challenge in visible-light catalysed degradation of organic pollutants. Most heterojunction materials are reported to face significant obstacles in the separation of photogenerated electron-hole pairs owing to differences in the material size and energy barriers. In this study, sulfur-doped g-CN oxidative-type semiconductor materials are synthesized and then coupled with BiOBr reductive-type semiconductor to form S-g-CN/BiOBr S-scheme heterojunction.

View Article and Find Full Text PDF

The bacterial pathogens Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) cause leaf blight and leaf streak diseases on rice, respectively. Pathogenesis is largely defined by the virulence genes harboured in the pathogen genome. Recently, we demonstrated that the protein HpaP of the crucifer pathogen Xanthomonas campestris pv.

View Article and Find Full Text PDF

Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions in most bacteria. Comparatively little is known about the mechanism(s) by which single-domain response regulators (SD-RRs), which lack a dedicated output domain but harbour a phosphoryl receiver domain, exert their various regulatory effects in bacteria. Here we have examined the role of the SD-RR proteins encoded by the phytopathogen Xanthomonas campestris pv.

View Article and Find Full Text PDF

Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that causes black rot in host. It is an important model strain for studying the interaction between the phytopathogen and plants.

View Article and Find Full Text PDF