High-throughput mesoscopic optical imaging technology has tremendously boosted the efficiency of procuring massive mesoscopic datasets from mouse brains. Constrained by the imaging field of view, the image strips obtained by such technologies typically require further processing, such as cross-sectional stitching, artifact removal, and signal area cropping, to meet the requirements of subsequent analyse. However, obtaining a batch of raw array mouse brain data at a resolution of can reach 220TB, and the cropping of the outer contour areas in the disjointed processing still relies on manual visual observation, which consumes substantial computational resources and labor costs.
View Article and Find Full Text PDFThe morphological analysis of cells from optical images is vital for interpreting brain function in disease states. Extracting comprehensive cell morphology from intricate backgrounds, common in neural and some medical images, poses a significant challenge. Due to the huge workload of manual recognition, automated neuron cell segmentation using deep learning algorithms with labeled data is integral to neural image analysis tools.
View Article and Find Full Text PDF