Publications by authors named "Peicheng Yuan"

Bidirectional nanoprinting, has received significant attention in image display and on-chip integration, due to its superior advantages. By manipulating the amplitude in a narrow- or broad-band wavelength range of forward and backward incident light, different spatially varied intensities or color distributions can be generated on the structure plane. However, the current scheme cannot fully decouple the bidirectional light intensity due to the limitation of design degree of freedom, and it would hinder the development of asymmetric photonic devices.

View Article and Find Full Text PDF

Electromagnetically induced transparency (EIT) based on dielectric metamaterials has attracted attentions in recent years because of its functional manipulation of electromagnetic waves and high refractive index sensitivity, such as high transmission, sharp phase change, and large group delay, etc. In this paper, an active controlled EIT effect based on a graphene-dielectric hybrid metamaterial is proposed in the near infrared region. By changing the Fermi level of the top-covered graphene, a dynamic EIT effect with a high quality factor (Q-factor) is realized, which exhibits a tunable, slow, light performance with a maximum group index of 2500.

View Article and Find Full Text PDF