Publications by authors named "Peibo Xu"

We present here a glutamate oxidase (GluOx)-modified platinum (Pt) nanoelectrode with a planar geometry for glutamate detection. The Pt nanoelectrode was characterized using electrochemistry and scanning electron microscopy (SEM). The radius of the Pt nanoelectrode measured using SEM is ∼210 nm.

View Article and Find Full Text PDF

Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics.

View Article and Find Full Text PDF

The cell lineages across developmental stages remain to be elucidated. Here, we developed single-cell split barcoding (SISBAR) that allows clonal tracking of single-cell transcriptomes across stages in an in vitro model of human ventral midbrain-hindbrain differentiation. We developed "potential-spective" and "origin-spective" analyses to investigate the cross-stage lineage relationships and mapped a multi-level clonal lineage landscape depicting the whole differentiation process.

View Article and Find Full Text PDF

We present here new amperometric electrodes for the selective and quantitative detection of acetylcholine. The detection was achieved based on the electrodeposition of a carbon electrode with poly(3,4-ethylenedioxythiophene) (PEDOT) followed by the drop-casting of an ionophore-doped poly(vinyl) chloride (PVC) membrane. This work paves the way for future applied research to study neurological disorders.

View Article and Find Full Text PDF

Oligodendrocyte spheroids (OL-spheroids) containing oligodendrocytes and neurons provide an accessible system to dissect demyelinating diseases and test therapeutic treatment. However, generation of human OL-spheroids is still technically challenging and time-consuming until now. Here, we presented evidence that overexpression of SOX10 and OLIG2 (SO) in human embryonic stem cells (hESCs)-derived ventral forebrain neural progenitors is sufficient to produce forebrain pre-oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) within 20-40 days.

View Article and Find Full Text PDF

Human pluripotent stem cell-based (hPSC-based) replacement therapy holds great promise for the treatment of Parkinson's disease (PD). However, the heterogeneity of hPSC-derived donor cells and the low yield of midbrain dopaminergic (mDA) neurons after transplantation hinder its broad clinical application. Here, we have characterized the single-cell molecular landscape during mDA neuron differentiation.

View Article and Find Full Text PDF

The malarial parasite Plasmodium exports its own proteins to the cell surfaces of red blood cells (RBCs) during infection. Examples of exported proteins include members of the repetitive interspersed family (RIFIN) and subtelomeric variable open reading frame (STEVOR) family of proteins from Plasmodium falciparum. The presence of these parasite-derived proteins on surfaces of infected RBCs triggers the adhesion of infected cells to uninfected cells (rosetting) and to the vascular endothelium potentially obstructing blood flow.

View Article and Find Full Text PDF

The development of new electrode materials with high specific capacity for excellent supercapacitive storage and energy conversion is highly desirable. The combination of metal and metal oxide with carbon is an effective strategy to achieve active bimetallic nanocatalysts. Herein, we developed a facile method to synthesize CoxMn1-xO@GC and Co/MnO@GC nanocomposites by an in situ conversion of Co-Mn PBAs.

View Article and Find Full Text PDF

Mixed/composite oxides of transition metals with hollow structures, especially multishelled hollow architecture, have promising potential for different applications, but their syntheses still remain a big challenge. Herein, a facile coordination polymer precursor method was developed to construct various multishelled Zn-Mn-O hollow microspheres, including ZnMnO, ZnMnO, and ZnMnO/MnO. The composition of the hollow structures can be adjusted by controlling the composition of the coordination polymer precursors, which are easily obtained with Zn, Mn, and salicylic acid under solvothermal conditions.

View Article and Find Full Text PDF