Publications by authors named "PeiYong Guo"

Suspended particulate matter (SPM), an important component of the natural water environment, can act as a carrier of many pollutants that affect aquatic organisms. In the present study, the effect of SPM obtained from Jinjiang Estuary on the physiological, biochemical, and photosynthetic properties of typical freshwater algae (Chlorella pyrenoidosa) was investigated. The results showed that under different concentrations of SPM treatment, the superoxide dismutase (SOD), catalase (CAT) activities, and malondialdehyde (MDA) content of C.

View Article and Find Full Text PDF

Skin trauma is a widespread, extremely susceptible health issue that affects people all over the world. In this study, an innovative antibacterial hydrogel (ODAA hydrogel) with photosensitizer and antibiotics was developed. Oxidized dextran (ODEX) was used as a carrier to prepare a pH-responsive hydrogel by loading the antibiotic amikacin (AMK) and the photosensitizer hexyl 5-aminolevulinate (HAL) via imine bonds.

View Article and Find Full Text PDF

The effects of different concentrations (100, 150, 200, 250 mg/L) and different particle sizes (0-75 μm, 75-120 μm, 120-150 μm, 150-500 μm) on the soluble protein content, superoxide dismutase (SOD) and catalase (CAT) activity, malondialdehyde (MDA) content, chlorophyll a (Chla) content, and photosynthetic parameters of Microcystis flos-aquae were studied, and the mechanism of the effect of suspended particulate matter on the physiology and biochemistry of Microcystis flos-aquae was discussed. The results showed that the soluble protein content of Microcystis flos-aquae did not change noticeably after being stressed by suspended particles of different concentrations/diameters. The SOD activity of Microcystis flos-aquae first increased and then decreased with increasing suspended particulate matter concentrations.

View Article and Find Full Text PDF

Here, we combined reversible addition-fragmentation chain transfer (RAFT) polymerization and amide coupling reaction to develop a novel drug-polymer conjugate using poly(AMA-co-IMMA)-b-poly(OEGMA) (termed as PAIPO) as nanocarriers. In order to enhance cellular uptake and obtain subsequent endo/lysosomal escape capacity, the dual-drugs-conjugated prodrug was then coupled with 2,3-dimethylmaleimide (DA) moieties and implanted with imidazolyl groups, respectively. Paclitaxel (PTX) was conjugated to PAIPO via 3,3'-dithiodipropionic acid (DPA) to construct a GSH-responsive moiety, while doxorubicin (DOX) was conjugated to PAIPO via 4-formyl benzoic acid to construct a pH-responsive moiety, which synergistically enabled a synchronized and precise drug delivery.

View Article and Find Full Text PDF

Natural nanoparticles (NNP) are ubiquitous in natural water and can interact with other contaminants, causing ecotoxic effects on aquatic nontarget organisms. However, the impact of NNPs on the ecotoxicity of antibiotics remains largely unknown. This work investigated the acute toxicity, chronic effect, and oxidative response and damage in Daphnia magna co-exposed to phenicol antibiotics (chloramphenicol, thiamphenicol) and different concentrations of NNPs (10 mg/L: environmentally relevant concentration; 100 mg/L: a high concentration that caused no apparent immobilization in D.

View Article and Find Full Text PDF

Biosynthetic of silver nanoparticles (AgNPs) by using fungi has attracted much attention due to its high catalytic efficiency and environmentally friendly characteristic. However, a few studies have focused on the ecological toxicity effects of biogenic AgNPs on algae. Here, we first investigated the catalytic reduction of 4-nitrophenol (4-NP) by WZ07-AgNPs biosynthesized by Letendraea sp.

View Article and Find Full Text PDF
Article Synopsis
  • * It was found that smaller microplastics (0.038-0.05 mm diameter) made up the majority (70.9%) of the total, and higher planting densities led to increased microplastic presence in the soil.
  • * The research highlighted that polyethylene terephthalate (PET) significantly alters soil properties, affecting structure and biodiversity, and that vegetated areas are more impacted by microplastics than bare soils.
View Article and Find Full Text PDF

The seasonal and spatial variation in the phytoplankton community structure and the environmental variables were investigated in December (the dry season) 2016 and July (the rainy season) 2017 in the Jinjiang River Estuary, China. We identified a total of 138 species of phytoplankton, which were mainly Chlorophyta, Bacillariophyta, and Cryptophyta in the dry season; however, in the rainy season, only Bacillariophyta were found. In the Jinjiang River Estuary, the species evenness and the biodiversity index were higher in the rainy season and that the species diversity was higher in the dry season.

View Article and Find Full Text PDF

Suspended particles (SP) exist widely in various water systems and are able to adsorb other pollutants in water, producing ecotoxic effects on aquatic nontarget species. Until now, however, few studies have focused on the effects of SP on antibiotics. Therefore, the present study investigated the effects of the mixtures of SP and phenicol antibiotics (chloramphenicol [CAP], thiamphenicol [TAP]) on acute toxicity and oxidative stress responses in Daphnia magna.

View Article and Find Full Text PDF

Acute toxicities of chloramphenicol (CAP), thiamphenicol (TAP), and florfenicol (FLO) and their mixtures on Daphnia magna under two representative temperatures of the aquatic environment (20 and 25 °C) have been examined. Their toxicities depicted with an order of 72-h EC values were as follows: CAP > FLO > TAP and CAP ≈ FLO > TAP under 20 and 25 °C, separately. Furthermore, the acute toxicity significantly increased with the rise of temperature from 20 to 25 °C in nearly all separate and mixture phenicol antibiotics.

View Article and Find Full Text PDF

Microplastics have received widespread attention as an emerging contaminant, but limited information was available during wetland restoration. The occurrence and characteristics of microplastics and their interaction with heavy metals in surface sediments from the Jinjiang Estuarine restored mangrove wetland were investigated. The abundance of microplastics ranged from 490 ± 127.

View Article and Find Full Text PDF

Sulfur has been shown to mitigate the toxic effects of metals on soil organisms. Here we report the effects of sulfur on cadmium toxicity to the collembolan Folsomia candida in soil, including its effects on glutathione (GSH) level, catalase (CAT) activity and metallothionein (MT) content. Following sulfur treatment, catalase, glutathione and metallothionein activities were all significantly increased in cadmium-contaminated soil, and as the cadmium concentration increased, the activities decreased.

View Article and Find Full Text PDF

The bioavailability of heavy metals in restored mangrove wetland sediments at the Jinjiang Estuary was assessed through acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM). The results indicated that the SEM distributions were more even than the AVS in the restored regions, and the AVS acted as an important carrier for SEM. SEM- was a major part (61.

View Article and Find Full Text PDF

To understand how planting patterns influence As and Cd in soils, the pollution grade release risk and fractions of As and Cd in soils from Jinjiang Estuary wetland were investigated. The geoaccumulation index () and risk assessment code (RAC) were used to identify pollution grades and reveal the potential ecological risk of trace metals, respectively. The results showed that the ratios of the acid soluble fraction of Cd in the mangrove area (∼65%) were larger than that of the control group (∼31%).

View Article and Find Full Text PDF

Microplastics are widely distributed in freshwater environments. At present, most of the studies on the toxicity of microplastics are concentrated on aquatic feeding animals, but relatively few have addressed freshwater algae. This study investigated the effect of microplastics (polypropylene (PP) and polyvinyl chloride (PVC)) exposure on the photosynthetic system of freshwater algae over the logarithmic growth period.

View Article and Find Full Text PDF

Phenicol antibiotics, such as chloramphenicol, thiamphenicol, and florfenicol, are commonly used in the veterinary and aquaculture fields to treat diseases and have frequently been detected in aquatic environments. Nevertheless, there is limited information regarding the effects of phenicol antibiotics on aquatic nontarget species. Thus, the present study aims to investigate the long-term (21-d) influence on the reproduction and growth of and the acute (24-h) oxidative response and tissue damage in the crustacean Daphnia magna after exposure to phenicol drugs, including their environmental concentrations.

View Article and Find Full Text PDF

Florfenicol (FF) and thiamphenicol (TAP) are two typical pharmaceuticals used widely as therapeutica antibiotic agents in aquaculture. However, little is known about the potential adverse effects of these two antibiotics on non-target organisms in the aquatic ecosystem. In this study we investigated the effects of FF and TAP on photosynthesis and the antioxidant system of the cyanobacteria Microcystis flos-aquae.

View Article and Find Full Text PDF

The effects of chitosan, gallic acid, and algicide chitosan-gallate on the activities of antioxidant enzymes, malonaldehyde (MDA) content, and photosynthetic activity of Microcystis flos-aquae were investigated to explore the physiological and biochemical mechanisms of algicides. Results demonstrated that chitosan did not significantly affect catalase (CAT) and superoxide dismutase (SOD) activities, MDA content, and photosynthetic activity in this alga. At 30 mg L(-1), gallic acid, CAT, and SOD activities and MDA of M.

View Article and Find Full Text PDF

Erythromycin, a macrolide antibiotic, is commonly used in human life. This compound and its derivatives have been detected in various aquatic compartments and may pose a serious threat to aquatic organisms. This study investigated the effects of erythromycin on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae.

View Article and Find Full Text PDF

The effects of levofloxacin (LEV) on Microcystis flos-aquae and its mechanism were investigated by determining the responses of some parameters of M. flos-aquae to LEV stress, including growth inhibition ratio, chlorophyll a content, superoxide dismutase (SOD) and catalase (CAT) activities, malondialdehyde (MDA) content, F v/F 0 and F v/F m, etc. The results indicated that LEV at 0.

View Article and Find Full Text PDF

Suspended particles are a natural component of aquatic ecosystems. This study provides a report on the survival, growth and reproduction of common-scale and nanoscale particles of Daphnia magna Straus exposed to five types of particles (i.e.

View Article and Find Full Text PDF

The effects of ethyl cinnamate on the growth and physiological characteristics of Chlorella pyrenoidosa were studied. The allelopathic mechanisms were explored, from views of chlorophyll a content, antioxidant enzyme activities, reactive oxygen species (ROS) level, malondialdehyde (MDA) content and photosynthetic activity. The results revealed that ethyl cinnamate had acute inhibitory effects on the growth of Chlorella pyrenoidosa, and the inhibited degree tended to increase with increased concentrations.

View Article and Find Full Text PDF

Background, Aim, And Scope: Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems.

View Article and Find Full Text PDF

Fine particles play an important role, not only in aquatic biogeochemical processing but also in the distribution, transfer and transformation of pollutants in the aquatic environment. Flow cytometry, widely used in biomedical research, allows fast counting and optical analysis of individual particles. Organic autotrophic particles contain naturally fluorescing pigments, such as chlorophyll and phycoerythrin.

View Article and Find Full Text PDF