Following the publication of the above article, a concerned reader drew to the Editor's attention that, regarding the western blots featured in Fig. 3B on p. 670, the bands featured in the U251 and U251‑MC lanes for the miR‑21 and U6 experiments appeared to be duplicates of each other.
View Article and Find Full Text PDFBackground: Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis.
View Article and Find Full Text PDF11C-PD153035, a potent and specific ATP-competitive tyrosine kinase inhibitor (TKI) of the EGF receptor, has been developed for PET imaging of epidermal growth factor receptor (EGFR) in lung cancer. The objective of the present study was to investigate the relationship of the accumulation of 11C-PD153035 and the EGFR expression level in human gliomas and to explore whether 11C-PD153035 can be used in the molecular imaging of glioma with EGFR overexpression. Eleven patients with histopathologically proven gliomas underwent 11C-PD153035 PET/CT examination before surgery.
View Article and Find Full Text PDFBackground: Long noncoding RNA Hox transcript antisense intergenic RNA (HOTAIR) has been characterized as a negative prognostic factor in breast and colon cancer patients. The clinical significance and function of HOTAIR in glioma remains unclear.
Methods: We analyzed the clinical significance of HOTAIR in 3 different glioma cohorts with gene expression data, including correlation with tumor grade, prognosis, and molecular subtype.
Epidermal growth factor receptors (EGFR) expression is frequently amplified in human glioblastoma cells. Nimotuzumab, a monoclonal antibody (mAb) against EGFR, has been used globally in clinics as an anti-cancer agent. It is largely unknown whether the blockade of miR-21, a microRNA that is upregulated in glioma cells, could amplify the effects of nimotuzumab.
View Article and Find Full Text PDFObjectives: To study the different expression of miRNA between pediatric and adult types of brainstem gliomas, and to provide the target miRNAs for explore the mechanism and miRNA interference of the malignant progression of pediatric BSG.
Methods: miRNA expression profiles in orthotopic models which could simulate the BSG heterogeneity were examined by microarray and analyzed to obtain the aberrantly expressed miRNAs. The two types of human BSG tissue were utilized to verify the microarray data by qRT-PCR and in situ hybridization for the putative causative miRNAs.
Background: Aberrant activation of beta-catenin/TCF4 and STAT3 signaling in glioblastoma multiforme (GBM) has been reported. However, the molecular mechanisms related to this process are still poorly understood.
Methods: Genome-wide screening of the binding characteristics of the transcription factors TCF4 and STAT3 in GBM cells was performed by chromatin immunoprecipitation sequencing (ChIP-seq) assay.
Background And Aims: Currently temozolomide (TMZ) as a potent agent is widely used to treat the glioblastoma multiforme (GBM), whereas recurrence due to intrinsic or acquired therapeutic resistance often occurs. Combination chemotherapy with TMZ may be a promising therapeutic strategy to improve treatment efficacy.
Methods: Aspirin, TMZ, and aspirin-/TMZ-coloaded poly (L-lactide-co-glycolide) (PLGA) microspheres were prepared by spray drying, and cytotoxicities of glioblastoma cells were measured.
CNS Neurosci Ther
September 2012
Background And Purpose: As an important oncogenic miRNA, miR-21 has been reported to play crucial roles in glioblastoma (GBM) carcinogenesis. However, the precise biological function and molecular mechanism of miR-21 in GBM remain elusive. This study is designed to explore the mechanism of miR-21 involved in the control of GBM cell growth.
View Article and Find Full Text PDFAims: MicroRNA-21 (miR-21) expression is increased in many types of human malignancy, including glioma. Recent studies report that miR-21 regulates cell invasion by targeting RECK, however, the underlying transcriptional regulation of miR-21 in glioma cells remains elusive.
Results: Here, we identify a positive correlation between miR-21 expression and pathological grade in glioma tissues.
Malignant gliomas are the most common type of intrinsic central nervous system (CNS) tumors with high mortality and morbidity. β-catenin is overexpressed in human glioblastoma and knockdown of β-catenin inhibits glioblastoma cell proliferation and invasive ability, and induces apoptotic cell death. Furthermore, treating the nude mice carrying established subcutaneous LN229 gliomas with siRNA targeting β-catenin intratumorally also delayed the tumor growth.
View Article and Find Full Text PDFβ-catenin, a key factor in the Wnt signaling pathway, has essential functions in the regulation of cell growth and differentiation. Aberrant β-catenin signaling has been linked to various disease pathologies, including an important role in tumorigenesis. Here, we review the regulation of the Wnt signaling pathway as it relates to β-catenin signaling in tumorigenesis, with particular focus on the role of microRNAs.
View Article and Find Full Text PDFBackground: MiR-221 and miR-222 (miR-221/222) are frequently up-regulated in various types of human malignancy including glioblastoma. Recent studies have reported that miR-221/222 regulate cell growth and cell cycle progression by targeting p27 and p57. However the underlying mechanism involved in cell survival modulation of miR-221/222 remains elusive.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) can function as either oncogenes or tumor suppressor genes via regulation of cell proliferation and/or apoptosis. MiR-221 and miR-222 were discovered to induce cell growth and cell cycle progression via direct targeting of p27 and p57 in various human malignancies. However, the roles of miR-221 and miR-222 have not been reported in human gastric cancer.
View Article and Find Full Text PDFmiRNAs are non-coding, single-stranded RNAs that regulate target gene expression by repressing translation or promoting RNA cleavage. Dicer is an essential component of the miRNA processing machinery. To identify a role for miRNAs in tumorigenesis, we designed an adenovirus expressing small hairpin RNA (shRNA) to silence Dicer and globally suppress the maturation of miRNAs.
View Article and Find Full Text PDFThe aim of present study is to conceive a biodegradable poly(ethylene glycol)-polylactide (PEG-PLA) copolymer nanoparticle which can be surface biofunctionalized with ligands via biotin-avidin interactions and used as a potential drug delivery carrier targeting to brain glioma in vivo. For this aim, a new method was employed to synthesize biotinylated PEG-PLA copolymers, i.e.
View Article and Find Full Text PDFMicroRNAs have been demonstrated to be deregulated in different types of cancer. miR-21 is a key player in the majority of cancers. Down-regulation of miR-21 in glioblastoma cells leads to repression of cell growth, increased cellular apoptosis and cell-cycle arrest, which can theoretically enhance the chemotherapeutic effect in cancer therapy.
View Article and Find Full Text PDFActivation of the AKT (serine-threonine kinase) pathway is a common feature in glioblastoma cells. Downstream factors of the AKT pathway are involved in cell proliferation, apoptosis, cellular migration and angiogenesis. Micro-RNAs (miRNAs) are highly conserved small non-coding RNAs that block targeted mRNA expression at the post-transcriptional level.
View Article and Find Full Text PDFBackground: Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM.
View Article and Find Full Text PDFTechnol Cancer Res Treat
February 2010
The successful of anti-cancer treatment are often limited by the development of drug resistance. Recent work has highlighted the involvement of non-coding RNAs, microRNAs(miRNAs) in cancer development, and their possible involvement in the evolution of drug resistance has been proposed. In this study, we combine taxol chemotherapy and miR-21 inhibitor treatment via polyamidoamine (PAMAM) dendrimers vector to evaluate the effects of combination therapy on suppression of breast cancer cells.
View Article and Find Full Text PDFOur previous study demonstrated that SEPT7 was downregulated at mRNA level in human gliomas. This study is to further examine the expression of SEPT7 in glioma samples and characterizes its role on cell cycle progression and growth of glioma cells. mRNA and protein expression of SEPT7 were detected by RT-PCR, immunohistochemical staining, and western blot analysis in human glioma specimens and normal brain tissues.
View Article and Find Full Text PDFObjective: To study the inhibitory effect of knocking down microRNA(miR)-221 and miR-222 on human glioma cell growth and its possible mechanism.
Methods: miRNA-221/222 antisense oligonucleotides (antisense miR221/222) were transfected into human glioma U251 cells by lipofectamine. Northern blot analysis was conducted to detect the mRNA expression of miR-221/222 in the control and transfected cell groups.
Cyclooxygenase-2 (COX-2) and Protein kinase B (PKB/Akt) play a crucial role in the formation of many malignant tumors and have been shown to be the important therapeutic targets. In the present study, we examined immunohistochemical expression of phosphorylated Akt (p-Akt) and COX-2 in 45 gastric adenocarcinomas with different tumor grades. Then, adenovirus-mediated small hairpin RNA (shRNA) expression vectors rAd5-Akt1+COX-2 (rAd5-A+C) that target sequences of human COX-2 and Akt1 were used to examine the inhibitory effects on cell proliferation, invasion and apoptosis in SGC7901 gastric adenocarcinoma and U251 glioma cells.
View Article and Find Full Text PDFZhonghua Yi Xue Yi Chuan Xue Za Zhi
October 2009
Objective: To study the effect of silencing Dicer by small interference RNA (siRNA) to suppress the global microRNA (miRNAs) expression on the biological characteristics of TJ905 glioblastoma cells.
Methods: The silencing effect of RNA interference on Dicer expression was evaluated by reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunofluorescence staining. The cell proliferation rate and cell cycle kinetics were detected by MTT assay and flow cytometry respectively, and the cell invasive ability was evaluated by transwell assay.
Zhonghua Bing Li Xue Za Zhi
July 2009