Photoassisted CO reduction employing a metal-free system is both challenging and fascinating. In our study, we present a structural engineering strategy to tune the potential energy barrier, which, in turn, affects the photoreduction ability. A series of porphyrin-based porous organic polymers () were hydrothermally synthesized and the influence of keto-enol tautomerization on the CO photoreduction potential has been rigorously investigated.
View Article and Find Full Text PDFThe fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, , including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), . The resultant exhibits superhigh proton conductivity with its value even highly up to 1.
View Article and Find Full Text PDFTaking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect.
View Article and Find Full Text PDFDeveloping heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling.
View Article and Find Full Text PDFConverting CO into value-added chemicals to solve the issues caused by carbon emission is promising but challenging. Herein, by embedding metal ions (Co , Ni , Cu , and Zn ) into an imidazole-linked robust photosensitive covalent organic framework (PyPor-COF), effective photocatalysts for CO conversion are rationally designed and constructed. Characterizations display that all of the metallized PyPor-COFs (M-PyPor-COFs) display remarkably high enhancement in their photochemical properties.
View Article and Find Full Text PDFIn order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities.
View Article and Find Full Text PDFDeveloping effective photosensitizers to initiate the generation of singlet oxygen (O) is of great significance in both chemistry and physiology. Herein, linking the photoactive porphyrin moieties by in situ-formed robust imidazole groups, a covalent organic framework (COF), , was successfully designed and synthesized. Detailed characterizations reveal that it not only possesses high crystallinity, permanent porosity, and robust stability but also shows a semiconductive photoresponse activity.
View Article and Find Full Text PDFA polyphosphazene with in-built -SOH moieties () was facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and sulfonate -phenylenediamine. Characterization reveals that it is a highly stable amorphous polymer. Proton conductivity investigations showed that the synthesized exhibits a proton conductivity of up to 6.
View Article and Find Full Text PDFDeveloping a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming "hydrogen economy" society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SOH moieties () was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells.
View Article and Find Full Text PDFOn account of their inherent reactive properties, radical reactions play an important role in organic syntheses. The booming photochemistry provides a feasible approach to trigger the generation of radical intermediates in organic reaction processes. Thus, developing effective photocatalysts becomes the key step in radical reactions.
View Article and Find Full Text PDFTaking a robust zirconium-based metal-organic framework, UiO-66, as a prototype, functional postmodification via the versatile Cu(I)-catalyzed azide-alkyne "click" reaction was carried out, and sulfonic acid groups were successfully grafted into its skeleton. Characterizations revealed that the MOF network was still well maintained after being treated by "clicked" modification. Investigations by electrochemical impedance spectroscopy measurements revealed that its proton conductivity increases exponentially up to 8.
View Article and Find Full Text PDFA zirconium-based metal-organic framework (MOF) was successfully constructed solvothermal assembly of a triphenylamine-based tricarboxylate ligand and Zr(IV) salt, the structure simulation of which revealed that it possesses a two-dimensional layered framework with a relatively rare dodecnuclear Zr cluster as the inorganic building unit. The inherent photo-responsive property derived from the incorporated photochromic triphenylamine groups combined with its high stability makes the constructed MOF an efficient heterogeneous photocatalyst for the oxidation of sulfides, which is a fundamentally important reaction type in both environmental and pharmaceutical industries. The photocatalytic activity of the constructed MOF was first investigated under various conditions with thioanisole as a representative sulfide substrate.
View Article and Find Full Text PDFThe reason that the stoichiometry of gas to water in artificial gas hydrates formed on porous materials is much higher than that in nature is still ambiguous. Fortunately, based on our experimental thermodynamic and kinetic study on the gas hydrate formation behavior with classic ordered mesoporous carbon CMK-3 and irregular porous activated carbon combined with density functional theory calculations, we discover a microscopic pathway of the gas hydrate formation on porous materials. Two interesting processes including (I) the replacement of water adsorbed on the carbon surface by gas and (II) further replacement of water in the pore by gas accompanied with the gas condensation in the pore and growth of gas hydrate crystals out of the pore were deduced.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2018
Determination of molecular structural parameters of hydrophobic cholesterol-naphthalimide conjugates for water binding capabilities as well as their moisture-sensitive supramolecular self-assembly were revealed. Water binding was a key factor in leading trace water-induced crystallization against gelation in apolar solvent. Ordered water molecules entrapped in self-assembly arrays revealed by crystal structures behave as hydrogen-bonding linkers to facilitate three-dimensional growth into crystals rather than one-dimensional gel nanofibers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
A green and scalable route to form a honeycomblike macroporous network by homogeneously weaving VO nanowires and carbon nanotubes (CNTs) was developed. The intertwinement between VO nanowires and CNTs not only integrates nanopores into the macroporous system but also elevates the collection and transfer of charges through the conductive network. The unique combination of VO nanowires and CNTs renders the composite monolith with synergic properties for substantially enhancing electrochemical kinetics of lithiation/delithiation when used as a lithium-ion battery (LIB) cathode.
View Article and Find Full Text PDFProbing the supramolecular chirality of assemblies and controlling their handedness are closely related to the origin of chirality at the supramolecular level and the development of smart materials with desired handedness. However, it remains unclear how achiral residues covalently bonded to chiral amino acids can function in the chirality inversion of supramolecular assemblies. Herein, we report macroscopic chirality and dynamic manipulation of chiroptical activity of hydrogels self-assembled from phenylalanine derivatives, together with the inversion of their handedness achieved solely by exchanging achiral substituents between oligo(ethylene glycol) and carboxylic acid groups.
View Article and Find Full Text PDFA highly porous metal-organic framework (MOF) with large pores was successfully obtained via solvothermal assembly of a "click"-extended tricarboxylate ligand and Zn(ii) ions. The inherent feature of large-molecule accessible pores endows the MOF with a unique property for utilization toward large guest molecules.
View Article and Find Full Text PDFA series of water-soluble troponate/aminotroponate ruthenium(II)-arene complexes were synthesized, where O,O and N,O chelating troponate/aminotroponate ligands stabilized the piano-stool mononuclear ruthenium-arene complexes. Structural identities for two of the representating complexes were also established by single-crystal X-ray diffraction studies. These newly synthesized troponate/aminotroponate ruthenium-arene complexes enable efficient C-H bond arylation of arylpyridine in water.
View Article and Find Full Text PDFMolecular catalysts based on water-soluble arene-Ru(II) complexes ([Ru]-1-[Ru]-5) containing aniline (L1), 2-methylaniline (L2), 2,6-dimethylaniline (L3), 4-methylaniline (L4), and 4-chloroaniline (L5) were designed for the homocoupling of arylboronic acids in water. These complexes were fully characterized by (1)H, (13)C NMR, mass spectrometry, and elemental analyses. Structural geometry for two of the representative arene-Ru(II) complexes [Ru]-3 and [Ru]-4 was established by single-crystal X-ray diffraction studies.
View Article and Find Full Text PDFA Cd(II)-based metal-organic framework, [Cd2(DPDC)2(BTB)]∞ (Cd-MOF, DPDC = 2,2'-diphenyldicarboxylate and BTB = 1,4-bis(1,2,4-triazol-1-yl)butane) was successfully constructed via a hydrothermal reaction. Structural analysis shows that the synthesized Cd-MOF is a three-dimensional (3D) architecture crystallized in the hexagonal system with a chiral space group P61. Powder X-ray diffraction experiments and thermogravimetric analysis reveal that the constructed Cd-MOF has a high chemical and thermal stability.
View Article and Find Full Text PDFA highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion.
View Article and Find Full Text PDFA highly porous metal-organic framework (MOF) incorporating both exposed metal sites and nitrogen-rich triazole groups was successfully constructed via solvothermal assembly of a clicked octcarboxylate ligand and Cu(II) ions, which presents a high affinity toward CO2 molecules clearly verified by gas adsorption and Raman spectral detection. The constructed MOF featuring CO2-adsorbing property and exposed Lewis-acid metal sites could serve as an excellent catalyst for CO2-based chemical fixation. Catalytic activity of the MOF was confirmed by remarkably high efficiency on CO2 cycloaddition with small epoxides.
View Article and Find Full Text PDFThree-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids.
View Article and Find Full Text PDFThree highly porous metal-organic frameworks (MOFs) with a uniform rht-type topological network but hierarchical pores were successfully constructed by the assembly of triazole-containing dendritic hexacarboxylate ligands with Zn(II) ions. These transparent MOF crystals present gradually increasing pore sizes upon extension of the length of the organic backbone, as clearly identified by structural analysis and gas-adsorption experiments. The inherent accessibility of the pores to large molecules endows these materials with unique properties for the uptake of large guest molecules.
View Article and Find Full Text PDF