Background: A computationally efficient tool is required for a genome-wide gene-gene interaction analysis that tests an extremely large number of single-nucleotide polymorphism (SNP) interaction pairs in genome-wide association studies (GWAS). Current tools for GWAS interaction analysis are mainly developed for unrelated case-control samples. Relatively fewer tools for interaction analysis are available for complex disease studies with family-based design, and these tools tend to be computationally expensive.
View Article and Find Full Text PDFMotivation: Several efficient gene-gene interaction tests have been developed for unrelated case-control samples in genome-wide association studies (GWAS), making it possible to test tens of billions of interaction pairs of single-nucleotide polymorphisms (SNPs) in a reasonable timeframe. However, current family-based gene-gene interaction tests are computationally expensive and are not applicable to genome-wide interaction analysis.
Results: We developed an efficient family-based gene-gene interaction test, GCORE, for trios (i.
Background: Genome-wide association studies (GWAS) have become a common approach to identifying single nucleotide polymorphisms (SNPs) associated with complex diseases. As complex diseases are caused by the joint effects of multiple genes, while the effect of individual gene or SNP is modest, a method considering the joint effects of multiple SNPs can be more powerful than testing individual SNPs. The multi-SNP analysis aims to test association based on a SNP set, usually defined based on biological knowledge such as gene or pathway, which may contain only a portion of SNPs with effects on the disease.
View Article and Find Full Text PDF