A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.
View Article and Find Full Text PDFCobalt phthalocyanine (CoPc) films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE) prepared under optimum conditions shows a well-behaved redox couple due to the (Co(I)/Co(II)) system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.
View Article and Find Full Text PDFA partially preanodized screen-printed carbon electrode (PSPCE*) coupled with flow injection analysis (FIA) was developed to raise the selectivity of ellagic acid (EA). To confirm the effectiveness of partial preanodization, two pretreated screen-printed carbon electrodes were electrochemically compared. One was a PSPCE* fabricated by potential cycling (-1.
View Article and Find Full Text PDFZinc pyrithione (ZPT) is an antibacterial and antifungal reagent that is often utilized for the antidandruff activity in hair-care shampoos with a composition level up to 1% in the formulation. It has some adverse effects to human and animal if consumed orally. A disposable type of cobalt phthalocyanide modified screen-printed carbon electrode (CoPc/SPE) in couple with flow injection analysis (FIA) was developed for easy and selective analysis of ZPT in commercial hair-care products.
View Article and Find Full Text PDF