Constructing porous structures in electromagnetic interference (EMI) shielding materials is a common strategy to decrease the secondary pollution caused by the reflection of electromagnetic waves (EMWs). However, the lack of direct analysis methods makes it difficult to fully understand the effect of porous structures on EMI, hindering EMI composites' development. Furthermore, while deep learning techniques, such as deep convolutional neural networks (DCNNs), have significantly impacted material science, their lack of interpretability limits their applications to property predictions and defect detection tasks.
View Article and Find Full Text PDFBackground: While the relationship between blood pressure and blood lead has been studied more extensively, the effect of high-density lipoprotein (HDL) concentration on this relationship remains uncertain. Therefore, this study aimed to determine the effect of HDL concentration on the relationship between blood lead and blood pressure.
Methods: The research used cross-sectional data from the 2005 to 2014 National Health and Nutrition Examination Survey (NHANES), which included 16,451 participants aged 20-60 years.
Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord.
View Article and Find Full Text PDF