Publications by authors named "Pei-Pei Xie"

Article Synopsis
  • A new method for C-H functionalization of heteroaryl compounds is introduced, which involves a process called dearomative addition followed by hydrogen autotransfer.
  • This process starts with the hydroruthenation of dienes to create allylruthenium nucleophiles, leading to branched C-C coupling products through addition and β-hydride elimination.
  • The study also details the formation of enantiomerically enriched heteroarylethyl alcohols and amines through oxidative cleavage and dynamic kinetic asymmetric reduction, supported by density functional theory calculations linking regioselectivities to molecular factors.
View Article and Find Full Text PDF

Owing to substantial advances in the past several decades, transition-metal-catalyzed asymmetric reactions have garnered considerable attention as pivotal methods for constructing chiral molecules from abundant, readily available achiral counterparts. These advances are largely attributed to the development of chiral ligands that control stereochemistry through steric repulsion and other noncovalent interactions between the ligands and functional groups or prochiral centers on the substrates. However, stereocontrol weakens dramatically with increasing distance between the reaction site and the functional group or prochiral center.

View Article and Find Full Text PDF

Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge.

View Article and Find Full Text PDF

Here, we describe a cooperative Pd(0)/chiral phosphoric acid catalytic system that allows us to realize the first chemo-, regio-, and enantioselective sequential cross-[4 + 2]-cycloaddition/decarboxylation reaction between 2-pyrones and unactivated acyclic 1,3-dienes. The key to the success of this transformation is the utilization of an achiral heterocyclic carbene (NHC) as the ligand and a newly developed chiral phosphoric acid as the cocatalyst. Experimental investigations and computational studies support the idea that the Pd(0)/NHC complex acts as a π-Lewis base to increase the nucleophilicity of 1,3-dienes via η coordination, while the chiral phosphoric acid simultaneously increases the electrophilicity of 2-pyrones by hydrogen bonding.

View Article and Find Full Text PDF

-Stereogenic phosphorus compounds are important structural elements in chiral ligands or organocatalysts. Herein, we report a Pd(II)-catalyzed enantioselective C-H olefination toward the synthesis of -stereogenic phosphinamides using cheap commercially available L-Glu-OH as a chiral ligand. A broad range of -stereogenic phosphinamides were gained in good yields with high enantioselectivities (33 examples, up to 77% yield, 99% ee) desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Ferrocidiphenols possessing appropriate substituents in the aliphatic chain have very promising anticancer properties, but a systematic approach to deciphering their diversified metabolic behavior has so far been lacking. Herein, we show that a series of novel ferrocidiphenols bearing different hydroxyalkyl substituents exhibit strong anticancer activity as revealed in a range of and experiments. Moreover, they display diversified oxidative transformation profiles very distinct from those of previous complexes, shown by the use of chemical and enzymatic methods and and metabolism studies.

View Article and Find Full Text PDF

Herein, we report a highly efficient synthesis of enantioenriched aza-[3.3.1]-bicyclic enamines and ketones, a class of structural cores in many natural products, via asymmetric dearomatization of indoles with azodicarboxylates.

View Article and Find Full Text PDF

Mechanism-guided reaction development is a well-appreciated research paradigm in chemistry since the merging of mechanistic knowledge would accelerate the discovery of new synthetic methods. Low-valent transition metals such as Pd(0)- and Rh(I)-catalyzed C-H arylation with aryl (pseudo)halides is among the enabling reactions for the exclusive cross-coupling of two different aryl partners. However, different from the situation of Pd(0)-catalysis, the mechanism of Rh(I)-catalyzed C-H arylation is underexplored.

View Article and Find Full Text PDF

Background: Circulating tumour cells (CTCs) are cancer cells that circulate in the bloodstream after being shed from solid tumours. They can lead to tumour recurrence and metastasis. CTCs play a significant role as biomarkers for early diagnosis, therapy response monitoring, and prognostication.

View Article and Find Full Text PDF

Enantioselective hydroarylation of unactivated terminal akenes constitutes a prominent challenge in organic chemistry. Herein, we reported a Cp*Co(III)-catalyzed asymmetric hydroarylation of unactivated aliphatic terminal alkenes assisted by a new type of tailor-made amino acid ligands. Critical to the chiral induction was the engaging of a novel noncovalent interaction (NCI), which has seldomly been disclosed in the C-H activation area, arising from the molecular recognition among the organocobalt(III) intermediate, the coordinated alkene, and the well-designed chiral ligand.

View Article and Find Full Text PDF

Asymmetric hydrogenation of olefins is one of the most powerful asymmetric transformations in molecular synthesis. Although several privileged catalyst scaffolds are available, the catalyst development for asymmetric hydrogenation is still a time- and resource-consuming process due to the lack of predictive catalyst design strategy. Targeting the data-driven design of asymmetric catalysis, we herein report the development of a standardized database that contains the detailed information of over 12000 literature asymmetric hydrogenations of olefins.

View Article and Find Full Text PDF

The introduction of chirality into peptoids is an important strategy to determine a discrete and robust secondary structure. However, the lack of an efficient strategy for the synthesis of structurally diverse chiral peptoids has hampered the studies. Herein, we report the efficient synthesis of a wide variety of -aryl peptoid atropisomers in good yields with excellent enantioselectivities (up to 99% yield and 99% ee) by palladium-catalyzed asymmetric C-H alkynylation.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents an innovative method for low-temperature, enantioselective C-N cross-coupling using nickel catalysts, allowing for the reaction to occur at temperatures as low as -50 °C.
  • It utilizes a unique chiral N-heterocyclic carbene (NHC) ligand that enhances both the reaction efficiency and selectivity, overcoming challenges typically faced in catalyst design.
  • Computational analysis reveals that the ligand's adaptable structure helps optimize the reaction at different stages, indicating potential for broader application in other metal-catalyzed asymmetric reactions.
View Article and Find Full Text PDF

The direct conversion of alkyl esters to ketones has been hindered by the sluggish reactivity of the starting materials and the susceptibility of the product towards subsequent nucleophilic attack. We have now achieved a cross-coupling approach to this transformation using nickel, a bulky N-heterocyclic carbene ligand, and alkyl organoboron coupling partners. 65 alkyl ketones bearing diverse functional groups and heterocyclic scaffolds have been synthesized with this method.

View Article and Find Full Text PDF

Herein we report a highly enantioselective kinetic resolution of tertiary benzyl alcohols via palladium/chiral norbornene cooperative catalysis. With simple aryl iodides as the resolution reagent, a wide range of readily available racemic tertiary benzyl alcohols are applicable to this method. Both chiral tertiary benzyl alcohols and benzo[c]chromene products are obtained in good to excellent enantioselectivities (selectivity factor up to 544).

View Article and Find Full Text PDF

Atropisomeric anilides have received tremendous attention as a novel class of chiral compounds possessing restricted rotation around an N-aryl chiral axis. However, in sharp contrast to the well-studied synthesis of biaryl atropisomers, the catalytic asymmetric synthesis of chiral anilides remains a daunting challenge, largely due to the higher degree of rotational freedom compared to their biaryl counterparts. Here we describe a highly efficient catalytic asymmetric synthesis of atropisomeric anilides via Pd(II)-catalyzed atroposelective C-H olefination using readily available Lpyroglutamic acid as a chiral ligand.

View Article and Find Full Text PDF

Herein, we report a catalyst system for Pd-catalyzed decarbonylative Suzuki-Miyaura cross-coupling of aroyl chlorides with boronic acids to furnish biaryls. This strategy is suitable for a broad range of common aroyl chlorides and boronic acids. The synthetic utility is highlighted in the direct late-stage functionalization of pharmaceuticals and natural products capitalizing on the presence of carboxylic acid moiety.

View Article and Find Full Text PDF

Because of the inherent difficulty in differentiating two olefins, the development of metal-catalyzed asymmetric cyclization of 1,6-dienes remains challenging. Herein, we describe the first rhodium(III)-catalyzed asymmetric borylative cyclization of cyclohexadienone-tethered mono-, 1,1-di-, and ()-1,2-disubstituted alkenes (1,6-dienes), affording optically pure -bicyclic skeletons bearing three or four contiguous stereocenters with high yields (25-93%), and excellent diastereoselectivities (>20:1 dr) and enantioselectivities (90-99% ee). This mild catalytic approach is generally compatible with a wide range of functional groups, which allows several facile conversions of the cyclization products.

View Article and Find Full Text PDF

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear.

View Article and Find Full Text PDF

A concise and divergent approach for the total syntheses of four cembrane diterpenoids, namely (+)-sarcophytin, (+)-chatancin, (-)-3-oxochatancin, and (-)-pavidolide B, has been developed, and it also led to the structural revision of (-)-isosarcophytin. The key steps of the strategy feature a double Mukaiyama Michael addition/elimination, a Helquist annulation, two substrate-controlled facial-selective hydrations, and a pinacol rearrangement. The described syntheses not only achieved these natural products in an efficient manner, but also provided insight into the biosynthetic relationship between the two different skeletons.

View Article and Find Full Text PDF

The asymmetric allylic alkylation (AAA), which features employing active allylic substrates, has historical significance in organic synthesis. The allylic C-H alkylation is principally more atom- and step-economic than the classical allylic functionalizations and thus can be considered a transformative variant. However, asymmetric allylic C-H alkylation reactions are still scarce and yet underdeveloped.

View Article and Find Full Text PDF

Nickel catalysis has shown remarkable potential in amide C⁻N bond activation and functionalization. Particularly for the transformation between ester and amide, nickel catalysis has realized both the forward (ester to amide) and reverse (amide to ester) reactions, allowing a powerful approach for the ester and amide synthesis. Based on density functional theory (DFT) calculations, we explored the mechanism and thermodynamics of Ni/IPr-catalyzed amidation with both aromatic and aliphatic esters.

View Article and Find Full Text PDF