Publications by authors named "Pei-Ming Wu"

Objective: Direct-current electrocorticography (DC-ECoG) allows a more complete characterization of brain states and pathologies than traditional alternating-current recordings (AC-ECoG). However, reliable recording of DC signals is challenging because of electrode polarization-induced potential drift, particularly at low frequencies and for more conducting materials. Further challenges arise as electrode size decreases, since impedance is increased and the potential drift is augmented.

View Article and Find Full Text PDF

Cerebral blood flow (CBF) plays a critical role in the exchange of nutrients and metabolites at the capillary level and is tightly regulated to meet the metabolic demands of the brain. After major brain injuries, CBF normally decreases and supporting the injured brain with adequate CBF is a mainstay of therapy after traumatic brain injury. Quantitative and localized measurement of CBF is therefore critically important for evaluation of treatment efficacy and also for understanding of cerebral pathophysiology.

View Article and Find Full Text PDF

A novel first-generation Clark-type biosensor platform that can eliminate the oxygen dependence has been presented. Sufficient oxygen to drive the enzymatic reaction under hypoxic conditions was produced by encapsulated oxygen generating biomaterial, calcium peroxide. The catalase immobilized in chitosan matrix was coated on top of the groove to decompose residual hydrogen peroxide to oxygen.

View Article and Find Full Text PDF

This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor.

View Article and Find Full Text PDF

The injured brain is vulnerable to increases in temperature after severe head injury. Therefore, accurate and reliable measurement of brain temperature is important to optimize patient outcome. In this work, we have fabricated, optimized and characterized temperature sensors for use with a micromachined smart catheter for multimodal intracranial monitoring.

View Article and Find Full Text PDF

This technical note presents a simple and disposable lab-on-a-tube (LOT) for point-of-care measurements of multiple analytes. LOT is a one-step device that can perform both sample collection and multi-sensing on-site. Sample collection is conducted by taking advantage of its inherent micro/macro channel structure while multi-sensing is conducted by integrated microsensors.

View Article and Find Full Text PDF

A novel lab-on-a-tube integrated with spirally-rolled pressure, temperature, oxygen and glucose microsensors is described for multimodal neuromonitoring of patients with traumatic brain injury. In addition to measuring various crucial parameters in real-time continuous formats, the newly developed device also works as an intraventricular catheter to lower the elevated intracranial pressure by draining cerebrospinal fluid.

View Article and Find Full Text PDF

A flexible polymer tube lab-chip integrated with physical and biochemical sensor modules mounted on a flexible spiral structure for measuring physiological (temperature/flow rate) and metabolic data (glucose concentration) in a catheter application was designed, fabricated and characterized in this work. This new approach not only provides a unique way to assemble multiple sensors on both the inside and outside the flexible polymer tube using standard microfabrication methods while avoiding wiring and assembling problems associated with previous methods, but also maintains catheter inherent lumen potency for in situ drug delivery or insertion of medical tools. Three well-known sensors: temperature sensor (RTD), flow rate sensor (hot film anemometry) and glucose biosensor (amperometric sensor) have been successfully fabricated and fully integrated outside the spirally rolled polymer tube (ID = 500 microm, OD = 650 microm) of this demonstration device.

View Article and Find Full Text PDF