Publications by authors named "Pei-Jing Wu"

Objectives: To investigate the expression of CD123 in children with acute lymphoblastic leukemia (ALL) and its effect on the clinical characteristics and prognosis of children with B-lineage acute lymphoblastic leukemia (B-ALL).

Methods: A retrospective analysis was conducted on the clinical data of 251 children with ALL who were admitted to the Department of Hematology and Oncology, Children's Hospital of Kunming Medical University, from December 2019 to June 2022. According to the expression of CD123 at initial diagnosis, the children were divided into CD123 group and CD123 group, and the two groups were compared in terms of clinical characteristics and treatment outcome.

View Article and Find Full Text PDF

This article describes the design and synthesis of quinoxaline-based semiconducting polymer dots (Pdots) that exhibit near-infrared fluorescence, ultrahigh brightness, large Stokes shifts, and excellent cellular targeting capability. We also introduced fluorine atoms and long alkyl chains into polymer backbones and systematically investigated their effect on the fluorescence quantum yields of Pdots. These new series of quinoxaline-based Pdots have a fluorescence quantum yield as high as 47% with a Stokes shift larger than 150 nm.

View Article and Find Full Text PDF

Recently, semiconducting polymer dots (Pdots) have become a novel type of ultrabright fluorescent probes which hold great promise in biological imaging and analytical detection. Here we developed a visual sensor based on Pdots for Pb(2+) detection. We first embedded near-infrared (NIR) dyes into the matrix of poly[(9,9-dioctylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PFBT-DBT) polymer and then capped the Pdots with polydiacetylenes (PDAs), in which parts of the PDAs were prefunctionalized with 15-crown-5 moieties to form Pdots.

View Article and Find Full Text PDF

In recent years, semiconducting polymer dots (Pdots) have emerged as a novel class of extraordinarily bright fluorescent probes with burgeoning applications in bioimaging and sensing. While the desire for near-infrared (NIR)-emitting agents for in vivo biological applications increases drastically, the direct synthesis of semiconducting polymers that can form Pdots with ultrahigh fluorescence brightness is extremely lacking due to the severe aggregation-caused quenching of the NIR chromophores in Pdots. Here we describe the synthesis of dithienylbenzoselenadiazole (DBS)-based NIR-fluorescing Pdots with ultrahigh brightness and excellent photostability.

View Article and Find Full Text PDF

This paper describes a simple platform that employs coumarin dye-encapsulated semiconducting polymer dots as a fluorescent probe for ratiometric and sensitive fluoride anion detection, in which the sensing mechanism is based on the deprotection of the tert-butyldimethylsilyl group on coumarin to induce Förster resonance energy transfer.

View Article and Find Full Text PDF

Semiconducting polymer dots (P-dots) recently have emerged as a new type of ultrabright fluorescent probe with promising applications in biological imaging and detection. With the increasing desire for near-infrared (NIR) fluorescing probes for in vivo biological measurements, the currently available NIR-emitting P-dots are very limited and the leaching of the encapsulated dyes/polymers has usually been a concern. To address this challenge, we first embedded the NIR dyes into the matrix of poly[(9,9-dioctylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PF-BT-DBT) polymer and then enclosed the doped P-dots with polydiacetylenes (PDAs) to avoid potential leakage of the entrapped NIR dyes from the P-dot matrix.

View Article and Find Full Text PDF

This paper describes a simple platform that employs spiropyran-functionalized semiconducting polymer dots as a fluorescent probe for photoactivated ratiometric and sensitive Cu(2+) detection, in which the sensing mechanism is based on photogenerated merocyanine that can selectively bind Cu(2+) to induce Förster resonance energy transfer.

View Article and Find Full Text PDF