β-carotene is a valuable pigment abundant in some microalgal species but the low β-carotene productivity of microalgae has become the major obstacles against its commercialization. This work aims to improve the productivity of algae-based β-carotene via genetic engineering approaches. First, a synthetic psy gene construct (891 bp) encoding 297 amino acids is expressed in Scenedesmus sp.
View Article and Find Full Text PDFMicroalgae serve as a promising source for the production of biofuels and bio-based chemicals. They are superior to terrestrial plants as feedstock in many aspects and their biomass is naturally rich in lipids, carbohydrates, proteins, pigments, and other valuable compounds. Due to the relatively slow growth rate and high cultivation cost of microalgae, to screen efficient and robust microalgal strains as well as genetic modifications of the available strains for further improvement are of urgent demand in the development of microalgae-based biorefinery.
View Article and Find Full Text PDFIn this study, CRISPRi (clustered regularly interspaced short palindromic repeats interference) was used for the first time to regulate expression of exogenously supplied rfp gene as a proof-of-concept, and endogenous PEPC1 gene as a proof-of-function in Chlamydomonas reinhardtii. The efficiency of 94% and stability of 7 generations via CRISPRi mediated gene regulation in C. reinhardtii have been demonstrated by RFP.
View Article and Find Full Text PDF