Publications by authors named "Pei Yuin Keng"

Malignant cancers, known for their pronounced heterogeneity, pose substantial challenges to monotherapeutic strategies and contribute to the risk of metastasis. Addressing this, our study explores the synergistic potential of combining boron neutron capture therapy (BNCT) with immune checkpoint blockade to enhance cancer treatment efficacy. We synthesized boron-rich block copolymer micelles as a novel boron drug for BNCT.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) targets invasive, radioresistant cancers but requires a selective and high B-10 loading boron drug. This manuscript investigates boron-rich poly(ethylene glycol)--(poly(4-vinylphenyl boronate ester)) polymer micelles synthesized via atom transfer radical polymerization for their potential application in BNCT. Transmission electron microscopy (TEM) revealed spherical micelles with a uniform size of 43 ± 10 nm, ideal for drug delivery.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is characterized by highly proliferative cancer cells and is the only subtype of breast cancer that lacks a targeted therapy. Boron neutron capture therapy (BNCT) is an approach that combines chemotherapy with radiotherapy and can potentially offer beneficial targeted treatment for TNBC patients owing to its unique ability to eradicate cancer cells selectively while minimizing damage to the surrounding healthy cells. Since BNCT relies on specific delivery of a high loading of B10 to the tumor site, there is growing research interest to develop more potent boron-based drugs for BNCT that can overcome the limitations of small-molecule boron compounds.

View Article and Find Full Text PDF

In this study, we investigated the thermal stabilities of butylphosphonic acid (BPA) and aminopropyltriethoxysilane (APTES) self-assembled monolayers (SAM) on a Si substrate. The thermal desorption and the thermal cleavage of the BPA and APTES SAM film on the Si substrate were studied by X-ray photoelectron spectroscopy (XPS) upon thermal treatment from 50 to 550 °C. XPS analyses show that the onset of the thermal desorption of the APTES monolayer occurs at 250 °C and the APTES SAM completely decomposed at 400 °C.

View Article and Find Full Text PDF

This study presents the utilization of MoS as a diffusion barrier for metal interconnects, in situ transmission electron microscopy (TEM) observations are employed for comprehensive understanding. The diffusion-blocking ability of MoS is discussed by the diffusion and phase transformation between Ru and Si via TEM diffraction and imaging. When the sample is heated to a high temperature such that MoS loses the ability to block the diffusion, Si diffuses through the MoS into the Ru layer, leading to the formation of RuSi.

View Article and Find Full Text PDF

Boron-based nanomaterials are emerging as non-toxic, earth-abundant (photo)electrocatalyst materials in solar energy conversion for the production of solar hydrogen fuel and environmental remediation. Boron carbon oxynitride (BCNO) is a quaternary semiconductor with electronic, optical, and physicochemical properties that can be tuned by varying the composition of boron, nitrogen, carbon, and oxygen. However, the relationship between BCNO's structure and -photocatalytic activity relationship has yet to be explored.

View Article and Find Full Text PDF

Boron neutron capture therapy (BNCT) is a powerful and selective anti-cancer therapy utilizing B-enriched boron drugs. However, clinical advancement of BCNT is hampered by the insufficient loading of B-10 drugs throughout the solid tumor. Furthermore, the preparation of boron drugs for BNCT relies on the use of the costly B-10 enriched precursor.

View Article and Find Full Text PDF

The development of a heterogeneous catalyst for use in environmental remediation remains a challenging and attractive research endeavor. Specifically, for Fenton reactions, most research approaches have focused on the preparation of iron-containing heterostructures as photo-Fenton catalysts that utilize visible light for enhancing the degradation efficiency. Herein, the synthesis and novel application of C,N-doped iron borates are demonstrated as single-component heterogeneous photo-Fenton catalysts with high Fenton activity under visible light.

View Article and Find Full Text PDF

An all-electronic, droplet-based batch microfluidic device, operated using the electrowetting on dielectric (EWOD) mechanism was developed for on-demand synthesis of -succinimidyl-4-[F]fluorobenzoate ([F]SFB), the most commonly used F-prosthetic group for biomolecule labeling. In order to facilitate the development of peptides, and proteins as new diagnostic and therapeutic agents, we have diversified the compact EWOD microfluidic platform to perform the three-step radiosynthesis of [F]SFB starting from the no carrier added [F]fluoride ion. In this report, we established an optimal microliter droplet reaction condition to obtain reliable yields and synthesized [F]SFB with sufficient radioactivity for subsequent conjugation to the anti-PSCA cys-diabody (A2cDb) and for small animal imaging.

View Article and Find Full Text PDF

Positron emission tomography (PET) is a molecular diagnostic imaging technology to quantitatively visualize biological processes . For many applications, including imaging of low tissue density targets (e.g.

View Article and Find Full Text PDF

The emerging technology of digital microfluidics is opening up the possibility of performing radiochemistry at the microliter scale to produce tracers for positron emission tomography (PET) labeled with fluorine-18 or other isotopes. Working at this volume scale not only reduces reagent costs but also improves specific activity (SA) by reducing contamination by the stable isotope. This technology could provide a practical means to routinely prepare high-SA tracers for applications such as neuroimaging and could make it possible to routinely achieve high SA using synthesis strategies such as isotopic exchange.

View Article and Find Full Text PDF

CE coupled with UV detection was assessed as a possible platform for the chemical identity and purity analysis of positron emission tomography (PET) tracers using [(18)F]FAC and [(18)F]FLT as examples. Representative samples containing mixtures of the tracers plus well-known impurities, as well as real radioactive samples (formulated for injection), were analyzed. Using MEKC with SDS in a neutral phosphate buffer, the separation of all compounds in the samples was achieved with baseline resolutions in less than 4.

View Article and Find Full Text PDF

Unlabelled: Access to diverse PET tracers for preclinical and clinical research remains a major obstacle to research in cancer and other disease research. The prohibitive cost and limited availability of tracers could be alleviated by microfluidic radiosynthesis technologies combined with a high-yield microscale radiosynthetic method. In this report, we demonstrate the multistep synthesis of 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) with high yield on an electrowetting-on-dielectric (EWOD) microfluidic radiosynthesizer, previously developed in our group.

View Article and Find Full Text PDF

Radiotracer synthesis is an ideal application for microfluidics because only nanogram quantities are needed for positron emission tomography (PET) imaging. Thousands of radiotracers have been developed in research settings but only a few are readily available, severely limiting the biological problems that can be studied in vivo via PET. We report the development of an electrowetting-on-dielectric (EWOD) digital microfluidic chip that can synthesize a variety of (18)F-labeled tracers targeting a range of biological processes by confirming complete syntheses of four radiotracers: a sugar, a DNA nucleoside, a protein labelling compound, and a neurotransmitter.

View Article and Find Full Text PDF

[(18)F]fallypride was synthesized in a batch microfluidic chip with a radiochemical yield of 65 ± 6% (n = 7) and an average specific activity of 730 GBq μmol(-1) (20 Ci μmol(-1)) (n = 4). Specific activity was ~2-fold higher than [(18)F]fallypride synthesized in a macroscale radiosynthesizer, despite starting with significantly less radioactivity, and thus safer conditions, in the microchip.

View Article and Find Full Text PDF

We present a simple microreactor with dimethyl sulfoxide (DMSO) phase-change valves suitable for performing batch organic chemistry under high temperature and pressure conditions. As a proof of principle, we demonstrate a radiofluorination reaction important in the synthesis of [(18)F]FAC, a new positron emission tomography biomarker for immune system monitoring and prediction of chemotherapy response. We achieved high radioactivity recovery (97 ± 1%, n = 3) and conversion efficiency (83 ± 1%, n = 3), comparable to that achieved with macroscale systems, but with a volume 30× smaller.

View Article and Find Full Text PDF

Digital microfluidic chips provide a new platform for manipulating chemicals for multi-step chemical synthesis or assays at the microscale. The organic solvents and reagents needed for these applications are often volatile, sensitive to contamination, and wetting, i.e.

View Article and Find Full Text PDF

We demonstrate a new approach to impedance measurement on digital microfluidics chips for the purpose of simple, sensitive, and accurate volume and liquid composition measurement. Adding only a single series resistor to existing AC droplet actuation circuits, the platform is simple to implement and has negligible effect on actuation voltage. To accurately measure the complex voltage across the resistor (and hence current through the device and droplet), the designed system is based on software-implemented lock-in amplification detection of the voltage drop across the resistor which filters out noise, enabling high-resolution and low-limit signal recovery.

View Article and Find Full Text PDF

We have developed an all-electronic digital microfluidic device for microscale chemical synthesis in organic solvents, operated by electrowetting-on-dielectric (EWOD). As an example of the principles, we demonstrate the multistep synthesis of [(18)F]FDG, the most common radiotracer for positron emission tomography (PET), with high and reliable radio-fluorination efficiency of [(18)F]FTAG (88 ± 7%, n = 11) and quantitative hydrolysis to [(18)F]FDG (> 95%, n = 11). We furthermore show that batches of purified [(18)F]FDG can successfully be used for PET imaging in mice and that they pass typical quality control requirements for human use (including radiochemical purity, residual solvents, Kryptofix, chemical purity, and pH).

View Article and Find Full Text PDF

The preparation of polystyrene-coated cobalt oxide nanowires is reported via the colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs). Using a combination of dipolar nanoparticle assembly and a solution oxidation of preorganized metallic colloids, interconnected nanoparticles of cobalt oxide spanning micrometers in length were prepared. The colloidal polymerization of PS-CoNPs into cobalt oxide (CoO and Co(3)O(4)) nanowires was achieved by bubbling O(2) into PS-CoNP dispersions in 1,2-dichlorobenzene at 175 degrees C.

View Article and Find Full Text PDF

We describe the synthesis and characterization of polymer-coated ferromagnetic cobalt nanoparticles (CoNPs). The synthesis of end-functionalized polystyrene surfactants possessing amine, carboxylic acid, or phosphine oxide end-groups was accomplished using atom-transfer radical polymerization. This versatile synthetic method enabled the production of multigram quantities of these polymeric surfactants that stabilized ferromagnetic CoNPs when dispersed in organic media.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Pei Yuin Keng"

  • - Pei Yuin Keng's recent research primarily focuses on advancing boron neutron capture therapy (BNCT) for cancer treatment, particularly through the development of boron-rich polymer micelles that enhance drug delivery and effectiveness against aggressive cancer types like triple-negative breast cancer.
  • - The studies explore the synthesis, stability, and tumor inhibition properties of novel boron-based nanodrugs and polymer systems, showcasing their potential as selective therapeutic agents that improve treatment outcomes while minimizing damage to healthy tissues.
  • - Additionally, Keng's work includes investigations into materials with applications beyond oncology, such as the thermal stability of organophosphonate self-assembled monolayers and the use of boron carbon oxynitride as a photocatalyst, reflecting a diverse approach to material science and its applications in environmental remediation and semiconductor technologies.