Anxious major depressive disorder is a common subtype of major depressive disorder; however, its unique neural mechanism is not well-understood currently. Using multimodal MRI data, this study examined common and specific alterations of amygdala subregions between patients with and without anxiety. No alterations were observed in the gray matter volume or intra-region functional integration in either patient group.
View Article and Find Full Text PDFMiR-200a acts as a key role in tumor malignant progression. This work purposed to assess the function of miR-200a in Wilm's tumor. Based on bioinformatics analysis, the expression, prognostic value and related pathways of miR-200a and CDC7 (a potential downstream molecule of miR-200a) in Wilm's tumor were analyzed.
View Article and Find Full Text PDFObjective: To explore the effectiveness and safety of the combined treatment with acupuncture and venlafaxine hydrochloride on depression in terms of the microstructure change of white matter fiber tracts of brain based on diffusion tensor imaging technology (DTI).
Methods: The prospective study design was adopted. All of 60 patients with depression were randomized into an acupuncture-medication group and a medication group, 30 cases in each one.
Background: Major depressive disorder (MDD) is highly heterogeneous in pathogenesis and manifestations. Further classification may help characterize its heterogeneity. We previously have shown differential metabolomic profiles of traditional Chinese medicine (TCM) diagnostic subtypes of MDD.
View Article and Find Full Text PDFBackground: Major depressive disorder (MDD) is a highly heterogeneous disease. Further classification may characterize its heterogeneity. The purpose of this study was to examine whether metabolomic variables could differentiate traditional Chinese medicine (TCM) diagnostic subtypes of MDD.
View Article and Find Full Text PDFIn previous reports, we and other groups have shown that proliferating hepatocytes are formed by the fusion of donor hematopoietic cells with host hepatocytes in the Fah(-/-) model. Thus, it would be interesting to determine whether cell fusion occurs during malignancy. However, it is difficult to demonstrate such processes using this model.
View Article and Find Full Text PDFBackground/aims: Immunologically and hemodynamically mediated the destruction of glomerular architecture is thought to be the major causes of end-stage renal failure. The purpose of this study is to evaluate the effect of glomerular hypertension on glomerular injury and the progression of glomerular sclerosis after Thy-1 nephritis was induced.
Method: Thy-1 nephritis was induced in the stroke-prone spontaneously hypertensive rat strain (SHR-SP) (group SP) and in age-matched Wistar-Kyoto (WKY) (group WKY) rats, following unilateral nephrectomy (UNX), and a vehicle was injected alone in UNX SHR-SP as control (group SC).
Autism is a neurodevelopmental disorder with a strong genetic predisposition. Neurolign 3 (NLGN3) as a postsynaptic transmembrane protein, functions in both neuron synaptogenesis and glia-neuron communications. Previously, a gain of function mutation (R451C) in NLGN3 was identified in autistic patients, which illustrates the involvement of NLGN3 in autism pathogenesis.
View Article and Find Full Text PDFHerbal medicine is increasingly used in depressed patients. The purpose of this retrospective controlled study was to evaluate the efficacy and safety of herbal medicine treatment of severe depressive episode. A total of 146 severely depressed subjects were selected from patients who were admitted to the Department of Psychosomatics of Tongde Hospital at Hangzhou, China between 1st September 2009 and 30th November 2013.
View Article and Find Full Text PDFExperimental evidence has indicated a role of adult renal progenitor cells in kidney regeneration and a protective role of the kidney by erythropoietin (EPO) and suramin in animal models and in humans after acute kidney injury (AKI). Han and colleagues analyzed different therapeutic effects between mouse renal progenitor cells (MRPCs), MRPC/EPO, or MRPC/suramin on the regeneration and protection of renal function after AKI. Their results revealed that MRPCs in combination with EPO or suramin are able to attenuate renal damage and promote renal recovery after ischemia/reperfusion injury in a mouse model.
View Article and Find Full Text PDFThe clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem.
View Article and Find Full Text PDFHuman trisomies can alter cellular phenotypes and produce congenital abnormalities such as Down syndrome (DS). Here we have generated induced pluripotent stem cells (iPSCs) from DS fibroblasts and introduced a TKNEO transgene into one copy of chromosome 21 by gene targeting. When selecting against TKNEO, spontaneous chromosome loss was the most common cause for survival, with a frequency of ~10(-4), while point mutations, epigenetic silencing, and TKNEO deletions occurred at lower frequencies in this unbiased comparison of inactivating mutations.
View Article and Find Full Text PDFThe distinct phenotypic and prognostic subclasses of human hepatocellular carcinoma (HCC) are difficult to reproduce in animal experiments. Here we have used in vivo gene targeting to insert an enhancer-promoter element at an imprinted chromosome 12 locus in mice, thereby converting ∼1 in 20,000 normal hepatocytes into a focus of HCC with a single genetic modification. A 300-kb chromosomal domain containing multiple mRNAs, snoRNAs, and microRNAs was activated surrounding the integration site.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI) is caused by dominant mutations in the type I collagen genes. In principle, the skeletal abnormalities of OI could be treated by transplantation of patient-specific, bone-forming cells that no longer express the mutant gene. Here, we develop this approach by isolating mesenchymal cells from OI patients, inactivating their mutant collagen genes by adeno-associated virus (AAV)-mediated gene targeting, and deriving induced pluripotent stem cells (iPSCs) that were expanded and differentiated into mesenchymal stem cells (iMSCs).
View Article and Find Full Text PDFPrecise genetic manipulation of human pluripotent stem cells will be required to realize their scientific and therapeutic potential. Here, we show that adeno-associated virus (AAV) gene targeting vectors can be used to genetically engineer human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different types of sequence-specific changes, including the creation and correction of mutations, were introduced into the human HPRT1 and HMGA1 genes (HPRT1 mutations being responsible for Lesch-Nyhan syndrome).
View Article and Find Full Text PDFBackground: Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.
Methodology/physical Findings: In this report we have used a similar method to direct induced pluripotent stem cells (iPS) from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors.
Therapeutic gene delivery typically involves the addition of a transgene expression cassette to mutant cells. This approach is complicated by transgene silencing, aberrant transcriptional regulation and insertional mutagenesis. An alternative strategy is to correct mutations through homologous recombination, allowing for normal regulation of gene expression from the endogenous locus.
View Article and Find Full Text PDFAdult stem cells offer the potential to treat many diseases through a combination of ex vivo genetic manipulation and autologous transplantation. Mesenchymal stem cells (MSCs, also referred to as marrow stromal cells) are adult stem cells that can be isolated as proliferating, adherent cells from bones. MSCs can differentiate into multiple cell types present in several tissues, including bone, fat, cartilage, and muscle, making them ideal candidates for a variety of cell-based therapies.
View Article and Find Full Text PDFResults from several experimental systems suggest that cells from one tissue type can form other tissue types after transplantation. This could be due to the presence of multipotential or several types of adult stem cells in donor tissues, or alternatively, to fusion of donor and recipient cells. In a model of tyrosinaemia type I, mice with mutations in the fumarylacetoacetate hydrolase gene (Fah-/-) regain normal liver function after transplantation of Fah+/+ bone marrow cells, and form regenerating liver nodules with normal histology that express Fah.
View Article and Find Full Text PDF