The overuse and reliance on pesticides has caused insects to develop resistance with global concerns. To address this problem extensive research is directed to find new and sustainable alternatives using chemical-free and resistance-free solutions for pest control. This paper presents a comprehensive investigation of the insecticidal properties of several types of industrially produced graphene powder materials such as graphene and graphene oxide (GO) with micro- and nano size and different structural and chemical properties as new contact nanopesticides against three major stored grain insects: the rice weevil Sitophilus oryzae (L.
View Article and Find Full Text PDFCurcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu.
View Article and Find Full Text PDFResearch on graphene-related two-dimensional (2D) materials (GR2Ms) in recent years is strongly moving from academia to industrial sectors with many new developed products and devices on the market. Characterization and quality control of the GR2Ms and their properties are critical for growing industrial translation, which requires the development of appropriate and reliable analytical methods. These challenges are recognized by International Organization for Standardization (ISO 229) and International Electrotechnical Commission (IEC 113) committees to facilitate the development of these methods and standards which are currently in progress.
View Article and Find Full Text PDFThe gold standard for diagnostics of SARS-CoV-2 (COVID-19) virus is based on real-time polymerase chain reaction (RT-PCR) using centralized PCR facilities and commercial viral RNA extraction kits. One of the key components of these kits are magnetic beads composed of silica coated magnetic iron oxide (FeO or FeO) nanoparticles, needed for the selective extraction of RNA. At the beginning of the pandemic in 2019, due to a high demand across the world there were severe shortages of many reagents and consumables, including these magnetic beads required for testing for SARS-CoV-2.
View Article and Find Full Text PDFThe rapid advancement of internet of things (IoT)-enabled applications along with connected automation in sensing technologies is the heart of future intelligent systems. The probable applications have significant implications, from chemical process monitoring to agriculture, mining, space, wearable electronics, industrial manufacturing, smart cities, and point-of-care (PoC) diagnostics. Advancing sensor performance such as sensitivity to detect trace amounts (ppb-ppm) of analytes (gas/VOCs), selectivity, portability, and low cost is critical for many of these applications.
View Article and Find Full Text PDFCounterfeits in the supply chain of high-value advanced materials such as graphene and their derivatives have become a concerning problem with a potential negative impact on this growing and emerging industry. Recent studies have revealed alarming facts that a large percentage of manufactured graphene materials on market are not graphene, raising considerable concerns for the end users. The common and recommended methods for the characterization of graphene materials, such as transmission electron microscopy (TEM), atomic force microscopy (AFM), and Raman spectroscopy based on spot analysis and probing properties of individual graphene particles, are limited to provide the determination of the properties of "bulk" graphene powders at a large scale and the identification of non-graphene components or purposely included additives.
View Article and Find Full Text PDFOwing to many fascinating properties including high thermal and chemical stability, excellent electrical insulation, fire-retardant and antibacterial properties, hexagonal boron nitride (hBN) has emerged as a prominent 2D material for broad applications. However, the production of high quality of hBN by chemical exfoliation from its precursor is still challenging. This paper presents a high-yield (+83%), low-cost and energy-efficient wet chemical exfoliation strategy, which produces few-layers (FL, 3-6 layers) of edge-functionalized (OH) hBN nanosheets with uniform size (486 ± 51 nm).
View Article and Find Full Text PDFFunctionalization of pristine graphene to achieve high water dispersibility remains as a key obstacle owing to the high hydrophobicity and absence of reactive functional groups on the graphene surface. Herein, a green and simple modification approach to prepare highly dispersible functionalized graphene via thermal thiol-ene click reaction was successfully demonstrated on pristine graphene. Specific chemical functionalities (-COO, -NH and -S) on the thiol precursor (L-cysteine ethyl ester) were clicked directly on the sp carbon of graphene framework with grafting density of 1 unit L-cysteine per 113 carbon atoms on graphene.
View Article and Find Full Text PDFPrinted electronic sensors offer a breakthrough in the availability of low-cost sensor devices for improving the quality of human life. Conductive ink is the core of printing technology and also one of the fastest growing sector among all ink industries. Among many developed conductive inks, graphene-based inks are especially recognized as very promising for future fabrication of devices due to their low cost, unique properties, and compatibility with various platforms such as plastics, textiles, and paper.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
May 2021
Magnetic nanoparticles have been widely used in the field of nanomedicine as drug delivery vehicles for targeted imaging-guided and controlled drug uptake and release actions. In this work, the loading of curcumin on FeO/rGO nanocomposites and their interaction mechanism were investigated by multispectral methods including resonance light scattering (RLS), atomic force microscopy (AFM), circular dichroism (CD) and Fourier transform infrared (FT-IR). Results revealed that the drug loading was a complex process which is not governed by a simple adsorption.
View Article and Find Full Text PDFThe development of low-cost and high performing hydrogen gas sensors is important across many sectors, including mining, energy and defense using hydrogen (H) gas. Herein, we demonstrate a new concept of H sensors based on Pd/Cr nanogaps created by using a simple mechanical bending deformation technique. These nanogap sensors can selectively detect the H gas based on transduction of the volume expansion after H uptake into an electrical signal by palladium-based metal-hydrides that allows closure of nanogaps for electrons flowing or tunneling.
View Article and Find Full Text PDFGraphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput. Interest in the use of 2D materials to create functional inks has exponentially increased in recent years with the development of new ink formulations linked with effective printing techniques, including screen, gravure, inkjet and extrusion-based printing towards low-cost device manufacturing. Exfoliated, solution-processed 2D materials formulated into inks permits additive patterning onto both rigid and conformable substrates for printed device design with high-speed, large-scale and cost-effective manufacturing.
View Article and Find Full Text PDFThe synthesis of graphene materials with multiple surface chemistries and functionalities is critical for further improving their properties and broadening their emerging applications. We present a simple chemical approach to obtain bulk quantities of multifunctionalized reduced graphene oxide (rGO) that combines chemical doping and functionalization using the thiol-ene click reaction. Controllable modulation of chemical multifunctionality was achieved by simultaneous nitrogen doping and gradual chemical reduction of graphene oxide (GO) using ammonia and hydrazine, followed by covalent attachment of amino-terminated thiol molecules using the thiol-ene click reaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
Engineering of multifunctional binding chemistry on graphene composites using thiol-ene click reaction for selective and highly efficient adsorption of mercury(II) is demonstrated. Graphene oxide (GO) is used as an initial material for covalent attachment of cysteamine molecules by thiol-ene click reaction on C═C groups to achieve a partially reduced graphene surface with multiple binding chemistry such as O, S, and N. Batch adsorption studies showed remarkable adsorption rate with only 1 mg L dosage of adsorbent used to remove 95% Hg (II) (∼1.
View Article and Find Full Text PDFBackground: For decades, copper sulphide has been renowned as the superior optical and semiconductor materials. Its potential applications can be ranged from solar cells, lithium-ion batteries, sensors, and catalyst systems. The synthesis methodologies of copper sulphide with different controlled morphology have been widely explored in the literature.
View Article and Find Full Text PDF