Publications by authors named "Pehau-Arnaudet G"

Article Synopsis
  • The loading of the bacterial helicase DnaB for genome replication relies on accessory proteins, particularly DciA, which is not well understood.
  • Research showed that DciA from Vibrio cholerae forms fluid condensates when interacting with single-stranded DNA, displaying phase separation behavior.
  • DnaB is recruited to these condensates while DciA is released, and similar behavior is observed with the helicase loader DnaC from E. coli, suggesting that DciA may help create non-membrane compartments for DNA replication.
View Article and Find Full Text PDF

The methanogenic strain Mx-05 was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order . It shares 86.

View Article and Find Full Text PDF

The human α7 nicotinic receptor is a pentameric channel mediating cellular and neuronal communication. It has attracted considerable interest in designing ligands for the treatment of neurological and psychiatric disorders. To develop a novel class of α7 ligands, we recently generated two nanobodies named E3 and C4, acting as positive allosteric modulator and silent allosteric ligand, respectively.

View Article and Find Full Text PDF

Although the presence of silica in many living organisms offers advanced properties including cell protection, the different in vitro attempts to build living materials in pure silica never favoured the cells viability. Thus, little attention has been paid to host-guest interactions to modify the expected biologic response. Here we report the physiological changes undergone by Escherichia coli K-12 in silica from colloidal solution to gel confinement.

View Article and Find Full Text PDF

The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties.

View Article and Find Full Text PDF

We present the first structure of the human Kir2.1 channel containing both transmembrane domain (TMD) and cytoplasmic domain (CTD). Kir2.

View Article and Find Full Text PDF

The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL).

View Article and Find Full Text PDF
Article Synopsis
  • The hantavirus Puumala virus (PUUV) and related viruses lead to serious diseases in humans, but there are currently no FDA-approved treatments available.
  • Recent research has identified human neutralizing antibodies (nAbs) that target specific glycoprotein spikes of the virus, which may help in treating these infections.
  • One particularly promising nAb, ADI-42898, has shown the ability to block virus entry and provide protection in animal models, making it a strong candidate for future clinical use and vaccine development.
View Article and Find Full Text PDF

Decrypting the B cell ontogeny of HIV-1 broadly neutralizing antibodies (bNAbs) is paramount for vaccine design. Here, we characterized IgA and IgG bNAbs of three distinct B cell lineages in a viremic controller, two of which comprised only IgG+ or IgA+ blood memory B cells; the third combined both IgG and IgA clonal variants. 7-269 bNAb in the IgA-only lineage displayed the highest neutralizing capacity despite limited somatic mutation, and delayed viral rebound in humanized mice.

View Article and Find Full Text PDF
Article Synopsis
  • * Super-resolution microscopy (SRM) reveals that vimentin filaments have a ~49-nanometer axial repeat and unit-length filaments (ULFs) measured at ~59 nanometers, indicating overlap during assembly.
  • * Research shows that the extensibility of vimentin is linked to the unfolding of its subunits rather than sliding, highlighting the relationship between its molecular structure and mechanical properties, which could guide future studies.
View Article and Find Full Text PDF

Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe form of pneumonia in humans, a phenotype evolved through interactions with aquatic protozoa in the environment. Here, we show that L. pneumophila uses extracellular vesicles to translocate bacterial small RNAs (sRNAs) into host cells that act on host defence signalling pathways.

View Article and Find Full Text PDF

Whereas extracellular vesicle (EV) research has become commonplace in different biomedical fields, this field of research is still in its infancy in mycology. Here we provide a robust set of data regarding the structural and compositional aspects of EVs isolated from the fungal pathogenic species and . Using cutting-edge methodological approaches including cryogenic electron microscopy and cryogenic electron tomography, proteomics, and flow cytometry, we revisited cryptococcal EV features and suggest a new EV structural model, in which the vesicular lipid bilayer is covered by mannoprotein-based fibrillar decoration, bearing the capsule polysaccharide as its outer layer.

View Article and Find Full Text PDF

Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood.

View Article and Find Full Text PDF

Budding yeast septins are essential for cell division and polarity. Septins assemble as palindromic linear octameric complexes. The function and ultra-structural organization of septins are finely governed by their molecular polymorphism.

View Article and Find Full Text PDF

Materials science has been informed by nonclassical pathways to crystallization, based on biological processes, about the fabrication of damage-tolerant composite materials. Various biomineralizing taxa, such as stony corals, deposit metastable, magnesium-rich, amorphous calcium carbonate nanoparticles that further assemble and transform into higher-order mineral structures. Here, we examine a similar process in abiogenic conditions using synthetic, amorphous calcium magnesium carbonate nanoparticles.

View Article and Find Full Text PDF

Replicative DNA polymerases (DNAPs) have evolved the ability to copy the genome with high processivity and fidelity. In Eukarya and Archaea, the processivity of replicative DNAPs is greatly enhanced by its binding to the proliferative cell nuclear antigen (PCNA) that encircles the DNA. We determined the cryo-EM structure of the DNA-bound PolD-PCNA complex from Pyrococcus abyssi at 3.

View Article and Find Full Text PDF

PolD is an archaeal replicative DNA polymerase (DNAP) made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2). Recently, we reported the individual crystal structures of the DP1 and DP2 catalytic cores, thereby revealing that PolD is an atypical DNAP that has all functional properties of a replicative DNAP but with the catalytic core of an RNA polymerase (RNAP). We now report the DNA-bound cryo-electron microscopy (cryo-EM) structure of the heterodimeric DP1-DP2 PolD complex from Pyrococcus abyssi, revealing a unique DNA-binding site.

View Article and Find Full Text PDF

HAPLESS2 (HAP2) is a broadly conserved, gamete-expressed transmembrane protein that was shown recently to be structurally homologous to viral class II fusion proteins, which initiate fusion with host cells via insertion of fusion loops into the host membrane. However, the functional conformation of the HAP2 fusion loops has remained unknown, as the reported X-ray structure of Chlamydomonas reinhardtii HAP2 lacked this critical region. Here, we report a structure-guided alignment that reveals diversification of the proposed HAP2 fusion loops.

View Article and Find Full Text PDF

The Rift Valley fever virus (RVFV) is transmitted by infected mosquitoes, causing severe disease in humans and livestock across Africa. We determined the x-ray structure of the RVFV class II fusion protein Gc in its postfusion form and in complex with a glycerophospholipid (GPL) bound in a conserved cavity next to the fusion loop. Site-directed mutagenesis and molecular dynamics simulations further revealed a built-in motif allowing en bloc insertion of the fusion loop into membranes, making few nonpolar side-chain interactions with the aliphatic moiety and multiple polar interactions with lipid head groups upon membrane restructuring.

View Article and Find Full Text PDF

Conserved across the family , glycoprotein B (gB) is responsible for driving fusion of the viral envelope with the host cell membrane for entry upon receptor binding and activation by the viral gH/gL complex. Although crystal structures of the gB ectodomains of several herpesviruses have been reported, the membrane fusion mechanism has remained elusive. Here, we report the X-ray structure of the pseudorabies virus (PrV) gB ectodomain, revealing a typical class III postfusion trimer that binds membranes via its fusion loops (FLs) in a cholesterol-dependent manner.

View Article and Find Full Text PDF

Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein.

View Article and Find Full Text PDF

Sexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa-animals, plants, and protists (including important human pathogens like Plasmodium)-suggests that many eukaryotic organisms share a common gamete fusion mechanism.

View Article and Find Full Text PDF

Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form.

View Article and Find Full Text PDF

PEGylated nanocapsules containing a liquid core of perfluorooctyl bromide (PFOB) were formulated by an emulsion-evaporation process to be further used as ultrasound contrast agents (UCAs). In an attempt to modulate their acoustic response, related to their shell thickness-to-radius ratio, the initial concentration of polymer was varied in the formulation. Indeed, thinner shells may lead to higher echogenicity.

View Article and Find Full Text PDF

Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood.

View Article and Find Full Text PDF