Human impacts are dramatically changing ecological communities, motivating research on resilience. Tropical reefs are increasingly undergoing transitions to short algal turf, a successional community that mediates either recovery to coral by allowing recruitment or transitions to longer turf/macroalgae. Intense herbivory limits turf height; subsequently, overfishing erodes resilience of the desirable coral-dominated reef state.
View Article and Find Full Text PDFGlobal evidence of phase shifts to alternate community types is of particular concern because these new communities can provide fundamentally different and often novel ecosystem functions and services compared to the original community. Shifts of a diverse range of marine communities to dominance by green macroalgal mats have occurred worldwide, making it critical to understand their emerging functions and roles. We observed a green algal mat on two reefs in the Eastern Tropical Pacific, with one persisting for >10 years on a reef with stable herbivore populations and no known sources of anthropogenic nutrients.
View Article and Find Full Text PDFClimate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves.
View Article and Find Full Text PDFCoral reefs are shifting from coral to algal-dominated ecosystems worldwide. Recently, Turbinaria ornata, a marine alga native to coral reefs of the South Pacific, has spread in both range and habitat usage. Given dense stands of T.
View Article and Find Full Text PDFWorldwide, many coral reefs are at risk of shifting to degraded algal-dominated states, due to compromised ecological conditions. Functional diversity of herbivorous fishes maintains coral reef health and promotes reef resilience to disturbances. Given previous evidence, it appears the functional roles of herbivorous fishes differ across geographical locations, indicating a need for further assessment of macroalgal consumption by herbivorous fishes.
View Article and Find Full Text PDFEcological systems are subjected to multiple stressors that can interact in complex ways resulting in "ecological surprises". We examine the pivotal role of 'control' assignment in the categorization of stressors into five classes: additive, +synergistic, -synergistic, +antagonistic, and -antagonistic. We demonstrate if an alternate treatment can reasonably be considered the experimental control, nonlinear interaction classifications change, both in sign (+/-) and in direction (synergistic/antagonistic).
View Article and Find Full Text PDFStorms strongly affect coral reefs; one unstudied but potentially important outcome may be a decrease in herbivory, presumably through changes to freshwater, sediment and nutrient influx. Algal turfs are sensitive early indicators of reef condition, and experimental evidence demonstrates low sediment loads and strong herbivory maintain short, healthy turf. While unknown, storms likely disrupt these controlling forces.
View Article and Find Full Text PDFHerbivory assays are a valuable tool used by ecologists to understand many of the patterns and processes affecting herbivory, a widely recognized driving force in marine communities. However, methods vary substantially among studies in both design and operation, and the effect of these differences has yet to be evaluated. We assessed the effects of several key components of assay design on estimates of herbivory to offer four recommendations.
View Article and Find Full Text PDFWorldwide, many coral reef ecosystems have shifted from coral to algal dominance, yet the ecological function of these emergent communities remains relatively unknown. Turbinaria ornata, a macroalga with a rapidly expanding range in the South Pacific, forms dense stands on hard substrate, likely providing ecological services unique from corals. While generally unpalatable, T.
View Article and Find Full Text PDFCoral populations and structural coral reefs have undergone severe reductions and losses respectively over large parts of the Galápagos Islands during and following the 1982-83 El Niño event. Coral tissue loss amounted to 95% across the Archipelago. Also at that time, all coral reefs in the central and southern islands disappeared following severe degradation and eventual collapse due primarily to intense bioerosion and low recruitment.
View Article and Find Full Text PDFLocal anthropogenic stressors such as overfishing, nutrient enrichment and increased sediment loading have been shown to push coral reefs toward greater dominance by algae. In a few cases this shift has been temporary, with the ability to recover to a healthy coral-dominated community after disturbance, suggesting some systems have considerable resilience. However, an understanding of the circumstances under which reefs may recover is only beginning to emerge.
View Article and Find Full Text PDFHerbivores balance resource requirements with predation risk, which can differ among landscapes; hence, landscape can shape these trade-offs, influencing herbivore distribution and behavior. While this paradigm has been well established on coral-dominated reefs, tropical reefs worldwide are shifting to algal dominance. If herbivores avoid algae due to higher risk and forage in coral, these algal states may be stabilized.
View Article and Find Full Text PDFCommunity ecologists use functional groups based on the rarely tested assumption that within-group responses to ecological processes are similar and thus members are functionally equivalent. However, recent research suggests that functional equivalency may break down with human impacts. We tested the equivalency assumption and model predictions of responses to simulated human alterations in nutrients and large herbivores for two models of coral reef algae, the Relative Dominance Model (RDM) and the Functional Group Model (FGM).
View Article and Find Full Text PDFEutrophication, defined as the accumulation of organic matter typically in response to anthropogenically enhanced nutrient inputs, often takes the form of macroalgal blooms in shallow estuaries and causes a cascade of adverse ecosystem effects. Confidence in the use of macroalgae as an indicator of eutrophication in estuaries is limited by the lack of quantitative data on thresholds of adverse effects. Field experiments can provide "benchmarks" of no effect or adverse effects that can be used to validate thresholds derived statistically from field data.
View Article and Find Full Text PDFWe quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch.
View Article and Find Full Text PDFAlthough coral reefs worldwide are subject to increasing global threats, humans also impact coral reefs directly through localized activities such as snorkeling, kayaking and fishing. We investigated five sites on the northern shore of Moorea, French Polynesia, and quantified the number of visitors on the beach and in shallow water. In field surveys, we measured total coral cover and colony sizes of two common genera, Porites and Acropora, a massive and branching morphology, respectively.
View Article and Find Full Text PDFExtreme population fluctuations, or outbreaks, are driven by interacting processes that are often more complex than isolated changes in consumer or resource control. Blooms of the macroalga Caulerpa sertularioides in the eastern tropical Pacific overgrew and killed reef-building corals, with blooms onto reefs corresponding to cool La Niña phases of inter-decadal fluctuations of the El Niño-Southern Oscillation. We quantified factors responsible for the maintenance of C.
View Article and Find Full Text PDFEstuar Coast Shelf Sci
September 2009
Strong interactions between top-down (consumptive) and bottom-up (resource supply) trophic factors occur in many aquatic communities, but these forces can act independently in some microphytobenthic communities. Within benthic estuarine diatom assemblages, the dynamics of these interactions and how they vary with abiotic environmental conditions are not well understood. We conducted a field experiment at two sites with varying habitat characteristics to investigate the interactive effects of grazers and nutrients on benthic estuarine diatoms.
View Article and Find Full Text PDFRocky intertidal habitats frequently are used by humans for recreational, educational, and subsistence-harvesting purposes, with intertidal populations damaged by visitation activities such as extraction, trampling, and handling. California Marine Managed Areas, particularly regulatory marine reserves (MRs), were established to provide legal protection and enhancement of coastal resources and include prohibitions on harvesting intertidal populations. However, the effectiveness of MRs is unclear as enforcement of no-take laws is weak and no regulations protect intertidal species from other detrimental visitor impacts such as trampling.
View Article and Find Full Text PDFNutrient enrichment from shrimp aquaculture poses an increasing environmental threat due to the industry's projected rapid growth and unsustainable management practices. Traditional methods to monitor impacts emphasize water quality sampling; however, there are many advantages to bioindicators, especially in developing countries. We investigated the usefulness of three bioindicators -- growth, tissue nitrogen content and nitrogen stable isotope signature (delta(15)N) -- in the tropical red macroalga Acanthophora spicifera.
View Article and Find Full Text PDFLocalized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient.
View Article and Find Full Text PDFNutrient inputs to estuaries are increasing worldwide, and anthropogenic contributions are increasingly complex and difficult to distinguish. Measurement of integrated effects of salinity and nutrient changes simultaneously can help ascertain whether N sources of similar magnitude and stable isotope (sigma15N) signatures are river dominated. We used Enteromorpha spp.
View Article and Find Full Text PDFMacroalgal dominance of some tropical reef communities in the Eastern Pacific after coral mortality during the 1997-1998 El Niño Southern Oscillation (ENSO) was facilitated by protection from herbivory by epiphytic cyanobacteria. Our results do not support that reduction in number of herbivores was a necessary precursor to coral reef decline and shifts to algal reefs in this system. Rather, macroalgae dominated the community for several years after this pulse disturbance with no concurrent change in herbivore populations.
View Article and Find Full Text PDFMussel beds along the wave-exposed coast of the eastern North Pacific Ocean serve as an important habitat, harboring a high diversity of species. A comparison of California mussel bed community diversity in 2002 to historical data (1960s to 1970s) revealed large declines (mean loss 58.9%), including some declines >141 species (approximately 80% loss).
View Article and Find Full Text PDFThe roles of co-occurring herbivores that modify habitat structure and ecosystem processes have seldom been examined in manipulative experiments or explored in early successional communities. In a created marsh in southern California (USA), we tested the individual and combined effects of two epibenthic invertebrates on nutrient and biomass pools, community structure, and physical habitat features. We manipulated snail (Cerithidea californica) and crab (Pachygrapsus crassipes) presence in field enclosures planted with pickleweed (Salicornia virginica) at elevations matching the plant's lower extent in an adjacent natural marsh.
View Article and Find Full Text PDF