Publications by authors named "Peggy Chan"

The infant brain develops rapidly and this area of research has great clinical implications. Neurodevelopmental disorders such as autism and developmental delay have their origins, potentially, in abnormal early brain maturation. Searching for potential early neural markers requires a priori knowledge about infant brain development and anatomy.

View Article and Find Full Text PDF

Background: The epidemiology of neonatal early-onset sepsis (EOS) has changed with time and with changes in prevention strategy. Population-representative contemporary data provide insights on how to further improve EOS prevention and triage strategies.

Methods: Neonates born in public hospitals in Hong Kong from January 1, 2006, to December 31, 2017 were included.

View Article and Find Full Text PDF

Preterm children show developmental cognitive and language deficits that can be subtle and sometimes undetectable until later in life. Studies of brain development in children who are born preterm have largely focused on vascular and gross anatomical characteristics rather than pathophysiological processes that may contribute to these developmental deficits. Neural encoding of speech as reflected in EEG recordings is predictive of future language development and could provide insights into those pathophysiological processes.

View Article and Find Full Text PDF

Objective: To evaluate the secular trends of sleep-wake patterns of Hong Kong preschool children.

Methods: Kindergartens from the four geographical regions of Hong Kong were randomly invited to take part in a sleep survey in 2012 and again in 2018. The parent-completed questionnaire provided information on socioeconomic status (SES), children's, and parental sleep-wake patterns.

View Article and Find Full Text PDF

The local delivery of therapeutic small interfering RNA or siRNA to the lungs has the potential to improve the prognosis for patients suffering debilitating lung diseases. Recent advances in materials science have been aimed at addressing delivery challenges including biodistribution, bioavailability and cell internalization, but an equally important challenge to overcome is the development of an inhalation device that can deliver the siRNA effectively to the lung, without degrading the therapeutic itself. Here, we report the nebulization of siRNA, either naked siRNA or complexed with polyethyleneimine (PEI) or a commercial transfection agent, using a miniaturizable acoustomicrofluidic nebulization device.

View Article and Find Full Text PDF

We investigated the development of early-latency and long-latency brain responses to native and non-native speech to shed light on the neurophysiological underpinnings of perceptual narrowing and early language development. Specifically, we postulated a two-level process to explain the decrease in sensitivity to non-native phonemes toward the end of infancy. Neurons at the earlier stages of the ascending auditory pathway mature rapidly during infancy facilitating the encoding of both native and non-native sounds.

View Article and Find Full Text PDF
Article Synopsis
  • The study created a new, cost-effective tool using EEG data to predict future language and communication skills in infants.
  • Researchers analyzed EEG responses from 118 infants to speech stimuli, and assessed their language development using standardized tests months later.
  • The findings showed high accuracy in predicting language outcomes, indicating that EEG can reliably forecast individual language development based on auditory neural function.
View Article and Find Full Text PDF

Background: Although several epidemiological studies have suggested mercury (Hg) might be associated with cardiotoxicity, the impact of Hg exposure on cardiac autonomic activity and blood pressure in children has not been investigated at Hg exposure levels equivalent to the Environmental Protection Agency (EPA) reference dose.

Objective: To investigate the association between low dose prenatal and recent methylmercury (MeHg) exposures and cardiac autonomic function and blood pressure with adjustment for factors such as fish consumption among children from a high fish consumption coastal city.

Methods: Children aged 7-8 years were recruited from the birth cohort of our previous study.

View Article and Find Full Text PDF

Neural differentiation is studied using a simultaneous application of 3D scaffold culture and hydrodynamic and electrical stimuli in purpose-designed recirculation bioreactors operated with continuous fluid flow. Pheochromocytoma (PC12) cells are seeded into nonwoven microfibrous viscose-rayon scaffolds functionalized with poly-l-lysine and laminin. Compared with the results from static control cultures with and without electrical stimulation and bioreactor cultures with the fluid flow without electrical stimulation, expression levels of the differentiation markers β3-tubulin, shootin1, and ephrin type-A receptor 2 are greatest when cells are cultured in bioreactors with fluid flow combined with in-situ electrical stimulus.

View Article and Find Full Text PDF

To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility.

View Article and Find Full Text PDF

Background: Genetic variations in glutathione (GSH)-related and metallothionein (MT) genes, which are involved in producing enzymes in the methylmercury (MeHg) metabolism pathway, have been proposed as one of the reasons for the individual variability in MeHg toxicokinetics.

Objective: To investigate the impact of genetic variations in MT and GSH-related genes on the association of fish consumption with body burden of MeHg, as measured by hair Hg concentrations among young children and women of childbearing age.

Methods: A total of 179 unrelated children and 165 mothers with either high or low fish consumption were recruited from the community.

View Article and Find Full Text PDF

The ability to spatially organise the microenvironment of tissue scaffolds unlocks the potential of many scaffold-based tissue engineering applications. An example application is to aid the regeneration process of peripheral nerve injuries. Herein, we present a promising approach for three-dimensional (3D) micropatterning of nerve cells in tissue scaffolds for peripheral nerve repair.

View Article and Find Full Text PDF

The effect of exogenous electrical stimulation on cell viability, attachment, growth, and neurogenesis was examined using PC12 cells in microfibrous viscose-rayon scaffolds immersed in culture medium. The scaffolds were applied either in their nonconductive state or after coating the fibres with 200 nm of gold to give a scaffold sheet resistivity of (13 ± 1.3) Ω square-1.

View Article and Find Full Text PDF

To reflect the rapidly growing interest in producing tissue sealants using various chemical/physical processes, we report an approach using visible light to control the crosslinking of 3D printable hydrogels as in situ tissue sealant. Gelatin-hydroxyphenylpropionic acid conjugate (Gtn-HPA) is shown to crosslink effectively within 30 s under visible light in the presence of [RuII(bpy)] and sodium persulphate, which is sufficiently rapid for surgery use. Porous structure can be also introduced by including carboxylmethyl cellulose-tyramine (CMC-Tyr) as a precursor.

View Article and Find Full Text PDF

Immunoblotting confers protein identification specificity beyond that of immunoassays by prepending protein electrophoresis (sizing) to immunoprobing. To accurately size protein targets, sample analysis includes concurrent analysis of protein markers with known molecular masses. To incorporate protein markers in single-cell western blotting, microwells are used to isolate individual cells and protein marker-coated microparticles.

View Article and Find Full Text PDF

Human stem cells, including pluripotent, embryonic and mesenchymal, stem cells play pivotal roles in cell-based therapies. Over the past decades, various methods for expansion and differentiation of stem cells have been developed to satisfy the burgeoning clinical demands. One of the most widely endorsed technologies for producing large cell quantities is using microcarriers (MCs) in bioreactor culture systems.

View Article and Find Full Text PDF

Background: Despite high fish consumption levels of Hong Kong residents, little is known about the MeHg exposure levels of Hong Kong high-risk populations (i.e. young children and women of childbearing age).

View Article and Find Full Text PDF

A handful of work focused on improving the intrinsic low mechanical properties of hydroxyapatite (HA) by various reinforcing agents. However, the big challenge regarding improving mechanical properties is maintaining bioactivity. To address this issue, we report fabrication of apatite-based composites by incorporation of alumina nanoparticles (n-AlO).

View Article and Find Full Text PDF

Reversible immobilization of DNA and RNA is of great interest to researchers who seek to manipulate DNA or RNA in applications such as microarrays, DNA hydrogels, and gene therapeutics. However, there is no existing system that can rapidly capture and release intact nucleic acids. To meet this unmet need, we developed a functional hydrogel for rapid DNA/RNA capture and release based on the reversible photo-cycloaddition of psoralen and pyrimidines.

View Article and Find Full Text PDF

Study Design: Retrospective radiographic study.

Objective: To assess whether flexibility as revealed by the supine radiograph, predicts in-brace curve correction.

Summary Of Background Data: Currently there is no consensus regarding a standard method to assess curve flexibility and immediate brace effectiveness in treating adolescent idiopathic scoliosis (AIS).

View Article and Find Full Text PDF

Objectives: To examine (1) the intra-rater, interrater, and test-retest reliabilities of the timed Up and Go test with a motor task (TUG) in terms of the number of steps taken in the test and completion time in a population with chronic stroke; (2) the relation between stroke-specific impairments and the number of steps taken in the test and the completion time; (3) the minimum detectable change in TUG times; and (4) the cutoff time that best discriminates the performance of people with stroke from that of older adults without stroke.

Design: Cross-sectional study.

Setting: University-based rehabilitation center.

View Article and Find Full Text PDF

Thread-based microfluidics offer a simple, easy to use, low-cost, disposable and biodegradable alternative to conventional microfluidic systems. While it has recently been shown that such thread networks facilitate manipulation of fluid samples including mixing, flow splitting and the formation of concentration gradients, the passive capillary transport of fluid through the thread does not allow for precise control due to the random orientation of cellulose fibres that make up the thread, nor does it permit dynamic manipulation of the flow. Here, we demonstrate the use of high frequency sound waves driven from a chip-scale device that drives rapid, precise and uniform convective transport through the thread network.

View Article and Find Full Text PDF

Nanoparticles are emerging transdermal delivery systems. Their size and surface properties determine their efficacy and efficiency to penetrate through the skin layers. This work utilizes three-dimensional (3D) bioprinting technology to generate a simplified artificial skin model to rapidly screen nanoparticles for their transdermal penetration ability.

View Article and Find Full Text PDF

Intense acoustically driven microcentrifugation flows are employed to enhance the assembly of cellular spheroids in the microwell of a tissue culture well plate. This ability to interface microfluidics with commonly used tissue culture plasticware is a significant advantage as it can potentially be parallelized for high throughput operation and allows existing analytical equipment designed to fit current laboratory formats to be retained. The microcentrifugation flow, induced in the microwell coated with a low adhesive hydrogel, is shown to rapidly enhance the concentration of cells into tight aggregates within a minute-considerably faster than the conventional hanging drop and liquid overlay methods, which typically require days-while maintaining their viability.

View Article and Find Full Text PDF

Despite the promise of stem cell therapy for lung therapeutics and repair, there are few viable means for directly delivering stem cells to locally target the respiratory airways via inhalation. This is not surprising given the significant challenges in aerosolising stem cells, particularly given their susceptibility to damage under the large stresses involved in the nebulisation process. Here, we present promising results using a microfluidic acoustic nebulisation platform that is not only low cost and portable, but also its high MHz order frequencies are effective for preserving the structural and functional integrity of mesenchymal stem cells (MSCs) during the nebulisation process.

View Article and Find Full Text PDF