Artificial intelligence (AI) has great potential to increase accuracy and efficiency in many aspects of neuroradiology. It provides substantial opportunities for insights into brain pathophysiology, developing models to determine treatment decisions, and improving current prognostication as well as diagnostic algorithms. Concurrently, the autonomous use of AI models introduces ethical challenges regarding the scope of informed consent, risks associated with data privacy and protection, potential database biases, as well as responsibility and liability that might potentially arise.
View Article and Find Full Text PDFBackground: Estimating tumor purity is especially important in the age of precision medicine. Purity estimates have been shown to be critical for correction of tumor sequencing results, and higher purity samples allow for more accurate interpretations from next-generation sequencing results. Molecular-based purity estimates using computational approaches require sequencing of tumors, which is both time-consuming and expensive.
View Article and Find Full Text PDFAdvances in quantitative biomarker development have accelerated new forms of data-driven insights for patients with cancer. However, most approaches are limited to a single mode of data, leaving integrated approaches across modalities relatively underdeveloped. Multimodal integration of advanced molecular diagnostics, radiological and histological imaging, and codified clinical data presents opportunities to advance precision oncology beyond genomics and standard molecular techniques.
View Article and Find Full Text PDFChromosomal instability (CIN) is a hallmark of human cancer yet not readily testable for patients with cancer in routine clinical setting. In this study, we sought to explore whether CIN status can be predicted using ubiquitously available hematoxylin and eosin histology through a deep learning-based model. When applied to a cohort of 1,010 patients with breast cancer (Training set: n = 858, Test set: n = 152) from The Cancer Genome Atlas where 485 patients have high CIN status, our model accurately classified CIN status, achieving an area under the curve of 0.
View Article and Find Full Text PDFVisual morphology assessment is routinely used for evaluating of embryo quality and selecting human blastocysts for transfer after in vitro fertilization (IVF). However, the assessment produces different results between embryologists and as a result, the success rate of IVF remains low. To overcome uncertainties in embryo quality, multiple embryos are often implanted resulting in undesired multiple pregnancies and complications.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
January 2021
Essential proteins are indispensable units for living organisms. Removing those leads to disruption of protein complexes and causing lethality. Recently, theoretical methods have been presented to detect essential proteins in protein interaction network.
View Article and Find Full Text PDFGenome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models.
View Article and Find Full Text PDFPathological evaluation of tumor tissue is pivotal for diagnosis in cancer patients and automated image analysis approaches have great potential to increase precision of diagnosis and help reduce human error. In this study, we utilize several computational methods based on convolutional neural networks (CNN) and build a stand-alone pipeline to effectively classify different histopathology images across different types of cancer. In particular, we demonstrate the utility of our pipeline to discriminate between two subtypes of lung cancer, four biomarkers of bladder cancer, and five biomarkers of breast cancer.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2017
Deciphering important genes and pathways from incomplete gene expression data could facilitate a better understanding of cancer. Different imputation methods can be applied to estimate the missing values. In our study, we evaluated various imputation methods for their performance in preserving significant genes and pathways.
View Article and Find Full Text PDFBackground: Knowledge of interaction types in biological networks is important for understanding the functional organization of the cell. Currently information-based approaches are widely used for inferring gene regulatory interactions from genomics data, such as gene expression profiles; however, these approaches do not provide evidence about the regulation type (positive or negative sign) of the interaction.
Results: This paper describes a novel algorithm, "Signing of Regulatory Networks" (SIREN), which can infer the regulatory type of interactions in a known gene regulatory network (GRN) given corresponding genome-wide gene expression data.
Background: Prostate cancer is one of the most widespread cancers in men and is fundamentally a genetic disease. Identifying regulators in cancer using novel systems biology approaches will potentially lead to new insight into this disease. It was sought to address this by inferring gene regulatory networks (GRNs).
View Article and Find Full Text PDFBackground: Prostate cancer, a serious genetic disease, has known as the first widespread cancer in men, but the molecular changes required for the cancer progression has not fully understood. Availability of high-throughput gene expression data has led to the development of various computational methods, for identification of the critical genes, have involved in the cancer.
Methods: In this paper, we have shown the construction of co-expression networks, which have been using Y-chromosome genes, provided an alternative strategy for detecting of new candidate, might involve in prostate cancer.
The human Y chromosome contains a small number of genes that play a critical role in the determination of male-specific organs. Today's advances have provided valuable resources for defining the functions of this chromosome in both normal and cancerous prostates. Despite the fact that generation of high-throughput expression data is becoming usual; the systematic methods of data analysis in a biological context are still an impediment.
View Article and Find Full Text PDFSelf-proliferation and differentiation into distinct cell types have been made stem cell as a promising target for regenerative medicine. Several key genes can regulate self-renewal and pluripotency of embryonic stem cells (hESCs). They work together and build a transcriptional hierarchy.
View Article and Find Full Text PDF