Shear stresses have been implicated in the formation of diabetes-related foot ulcers. The aim of this study was to evaluate the effect of a novel shear-reducing insole on the thermal response to walking, balance, and gait. Twenty-seven diabetes peripheral neuropathy patients were enrolled and asked to take 200 steps in both intervention and standard insoles.
View Article and Find Full Text PDFBackground: Many of the physiological changes that lead to diabetic foot ulceration, such as muscle atrophy and skin hardening, are manifested at the foot-ground interface via pressure and shear points. Novel shear-reducing insoles have been developed, but their magnitude of shear stiffness has not yet been compared with regular insoles. The aim of this study was to develop an apparatus that would apply shear force and displacement to an insole's forefoot region, reliably measure deformation, and calculate insole shear stiffness.
View Article and Find Full Text PDFWe constructed a powered ankle-foot orthosis for human walking with a novel myoelectric controller. The orthosis included a carbon fiber and polypropylene shell, a metal hinge joint, and two artificial pneumatic muscles. Soleus electromyography (EMG) activated the artificial plantar flexor and inhibited the artificial dorsiflexor.
View Article and Find Full Text PDF